tìm x: x(2x-4)=(2x+3)(x+2)-39 (3x-5)^2=(x+1)^2 x^3-8=(x-2)(x+4)(x+10) làm giúp pls 08/08/2021 Bởi Margaret tìm x: x(2x-4)=(2x+3)(x+2)-39 (3x-5)^2=(x+1)^2 x^3-8=(x-2)(x+4)(x+10) làm giúp pls
Giải thích các bước giải: `x(2x-4)=(2x+3)(x+2)-39` `=>2x^2-4x=2x^2+4x+3x+6-39` `=>2x^2-4x=2x^2+7x-33` `=>11x-33=0` `=>11(x-3)=0` `=>x-3=0=>x=3` `(3x-5)^2=(x+1)^2` `=>(3x-5)^2-(x+1)^2=0` `=>(3x-5-x-1)(3x-5+x+1)=0` `=>(2x-6)(4x-4)=0` `=>2(x-3).4(x-1)=0` `=>`\(\left[ \begin{array}{l}x-3=0\\x-1=0\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=3\\x=1\end{array} \right.\) `x^3-8=(x-2)(x+4)(x+10)` `=>(x-2)(x^2+2x+4)-(x-2)(x^2+14x+40)=0` `=>(x-2)(x^2+2x+4-x^2-14x-40)=0` `=>(x-2)(-12x-36)=0` `=>-12(x-2)(x+3)=0` `=>`\(\left[ \begin{array}{l}x-2=0\\x+3=0\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) Bình luận
a,x(2x-4)=(2x+3)(x+2)-39 ⇔2x²-4x=2x²+4x+3x+6-39 ⇔-11x=-33 ⇔x=3 Vậy x=3 b,(3x-5)²=(x+1)² ⇔(3x-5)²-(x+1)²=0 ⇔(3x-5-x-1)(3x-5+x+1)=0 ⇔(2x-6)(4x-4)=0 ⇔8(x-3)(x-1)=0 ⇔\(\left[ \begin{array}{l}x-3=0\\x-1=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=3\\x=1\end{array} \right.\) Vậy x=3;x=1 c,x³-8=(x-2)(x+4)(x+10) ⇔(x-2)(x²+2x+4)-(x-2)(x+4)(x+10)=0 ⇔(x-2)[x²+2x+4-(x+4)(x+10)]=0 ⇔(x-2)(x²+2x+4-x²-10x-4x-40)=0 ⇔(x-2)(-12x-36)=0 ⇔-12(x-2)(x+3)=0 ⇔\(\left[ \begin{array}{l}x-2=0\\x+3=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) Vậy x=2;x=-3 Bình luận
Giải thích các bước giải:
`x(2x-4)=(2x+3)(x+2)-39`
`=>2x^2-4x=2x^2+4x+3x+6-39`
`=>2x^2-4x=2x^2+7x-33`
`=>11x-33=0`
`=>11(x-3)=0`
`=>x-3=0=>x=3`
`(3x-5)^2=(x+1)^2`
`=>(3x-5)^2-(x+1)^2=0`
`=>(3x-5-x-1)(3x-5+x+1)=0`
`=>(2x-6)(4x-4)=0`
`=>2(x-3).4(x-1)=0`
`=>`\(\left[ \begin{array}{l}x-3=0\\x-1=0\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=3\\x=1\end{array} \right.\)
`x^3-8=(x-2)(x+4)(x+10)`
`=>(x-2)(x^2+2x+4)-(x-2)(x^2+14x+40)=0`
`=>(x-2)(x^2+2x+4-x^2-14x-40)=0`
`=>(x-2)(-12x-36)=0`
`=>-12(x-2)(x+3)=0`
`=>`\(\left[ \begin{array}{l}x-2=0\\x+3=0\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\)
a,x(2x-4)=(2x+3)(x+2)-39
⇔2x²-4x=2x²+4x+3x+6-39
⇔-11x=-33
⇔x=3
Vậy x=3
b,(3x-5)²=(x+1)²
⇔(3x-5)²-(x+1)²=0
⇔(3x-5-x-1)(3x-5+x+1)=0
⇔(2x-6)(4x-4)=0
⇔8(x-3)(x-1)=0
⇔\(\left[ \begin{array}{l}x-3=0\\x-1=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=3\\x=1\end{array} \right.\)
Vậy x=3;x=1
c,x³-8=(x-2)(x+4)(x+10)
⇔(x-2)(x²+2x+4)-(x-2)(x+4)(x+10)=0
⇔(x-2)[x²+2x+4-(x+4)(x+10)]=0
⇔(x-2)(x²+2x+4-x²-10x-4x-40)=0
⇔(x-2)(-12x-36)=0
⇔-12(x-2)(x+3)=0
⇔\(\left[ \begin{array}{l}x-2=0\\x+3=0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\)
Vậy x=2;x=-3