Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai. Nếu xóa bỏ chữ số hàng đơn vị của số

Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư.

0 bình luận về “Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai. Nếu xóa bỏ chữ số hàng đơn vị của số”

  1. Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:

    abcd + abc + ab + a = 2003.

    Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)

    Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:

    1111 + bbb + cc + d = 2003.

    bbb + cc + d = 2003 – 1111

    bbb + cc + d = 892 (**)

    b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.

    Thay b = 8 vào (**) ta được:

    888 + cc + d = 892

    cc + d = 892 – 888

    cc + d = 4

    Từ đây suy ra c chỉ có thể bằng 0 và d = 4.

    Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.

    Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)

                                    Cho mik cau trả lời hay nhất nha !!!

    Bình luận
  2. Nếu số thứ tư là số có một chữ số thì số thứ ba có hai chữ số, số thứ hai có ba chữ số và số thứ tư có bốn chữ số.

    Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.

    Gọi số thứ nhất là abcd.

    Theo bài ra ta có:abcd + abc + ab + a = 2003

    Nên a = 1=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003=> bcd + bc + b = 892 nên b = 8=> 800 + cd + 80 + c + 8 = 892=> cd +  c = 4=> c = 0 và d = 4

    Số phải tìm là: 1804; 180; 18; 1

    Bình luận

Viết một bình luận