TÌM X: a)2x ²(2x-3)-x ²(4x ²-6x+2)=0 b)(x-2) ²-(x+3) ²-4(x+1)=5 c)4x ²-4x+1=(5-x) ² d)4x ²-8x+4=2(1-x)(1+x)

TÌM X:
a)2x ²(2x-3)-x ²(4x ²-6x+2)=0
b)(x-2) ²-(x+3) ²-4(x+1)=5
c)4x ²-4x+1=(5-x) ²
d)4x ²-8x+4=2(1-x)(1+x)

0 bình luận về “TÌM X: a)2x ²(2x-3)-x ²(4x ²-6x+2)=0 b)(x-2) ²-(x+3) ²-4(x+1)=5 c)4x ²-4x+1=(5-x) ² d)4x ²-8x+4=2(1-x)(1+x)”

  1. Giải thích các bước giải:

    \[\begin{array}{l}
    a,\\
    2{x^2}\left( {2x – 3} \right) – {x^2}\left( {4{x^2} – 6x + 2} \right) = 0\\
     \Leftrightarrow {x^2}\left( {4x – 6 – \left( {4{x^2} – 6x + 2} \right)} \right) = 0\\
     \Leftrightarrow {x^2}\left( { – 4{x^2} + 10x – 8} \right) = 0\\
     \Leftrightarrow {x^2}\left( { – \left( {2{x^2}} \right) + 2.2x.\frac{5}{2} – \frac{{25}}{4} – \frac{7}{4}} \right) = 0\\
     \Leftrightarrow {x^2}\left( { – {{\left( {2x – \frac{5}{2}} \right)}^2} – \frac{7}{4}} \right) = 0\\
     – {\left( {2x – \frac{5}{2}} \right)^2} – \frac{7}{4} < 0 \Rightarrow x = 0\\
    b,\\
    {\left( {x – 2} \right)^2} – {\left( {x + 3} \right)^2} – 4\left( {x + 1} \right) = 5\\
     \Leftrightarrow \left( {x – 2 + x + 3} \right)\left( {x – 2 – x – 3} \right) – 4\left( {x + 1} \right) = 5\\
     \Leftrightarrow  – 5\left( {2x + 1} \right) – 4x – 4 = 5\\
     \Leftrightarrow  – 14x = 14\\
     \Leftrightarrow x =  – 1\\
    c,\\
    4{x^2} – 4x + 1 = {\left( {5 – x} \right)^2}\\
     \Leftrightarrow {\left( {2x – 1} \right)^2} – {\left( {5 – x} \right)^2} = 0\\
     \Leftrightarrow \left( {2x – 1 – 5 + x} \right)\left( {2x – 1 + 5 – x} \right) = 0\\
     \Leftrightarrow \left( {3x – 6} \right)\left( {x + 4} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 2\\
    x =  – 4
    \end{array} \right.\\
    d,\\
    4{x^2} – 8x + 4 = 2\left( {1 – x} \right)\left( {1 + x} \right)\\
     \Leftrightarrow 4{x^2} – 8x + 4 = 2\left( {1 – {x^2}} \right)\\
     \Leftrightarrow 6{x^2} – 8x + 2 = 0\\
     \Leftrightarrow 2\left( {x – 1} \right)\left( {3x – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 1\\
    x = \frac{1}{3}
    \end{array} \right.
    \end{array}\]

    Bình luận
  2. \[\begin{array}{l}
    a){x^2}(4x – 6 – 4{x^2} + 6x – 2) = 0\\
     \to {x^2}( – 4{x^2} + 10x – 8) = 0\\
     \to {x^2}({x^2} – 5x + 4) = 0\\
     \to {x^2}(x – 1)(x – 4) = 0 \to x = 0;x = 1;x = 4\\
    b){x^2} – 4x + 4 – ({x^2} + 6x + 9) – 4x – 4 – 5 = 0\\
     \to  – 14x – 14 = 0 \to x =  – 1
    \end{array}\]

    Bình luận

Viết một bình luận