Tìm x a) 2x(x + 3) + 5(x + 3) = 0 b) x(x + 4) = 2(-x – 4) c) x^3 = x d) x^2 – 10x + 25 = 0 e) x^2 – 10x + 24 = 0 f) 2(x + 1)/ 3 – 1 = 3/2 – 1-2x / 4

Tìm x
a) 2x(x + 3) + 5(x + 3) = 0
b) x(x + 4) = 2(-x – 4)
c) x^3 = x
d) x^2 – 10x + 25 = 0
e) x^2 – 10x + 24 = 0
f) 2(x + 1)/ 3 – 1 = 3/2 – 1-2x / 4
g) 3(x + 1) / 10 = 2(x – 1) / 3 + 4/5
h) x^2 – x – 2 = 0

0 bình luận về “Tìm x a) 2x(x + 3) + 5(x + 3) = 0 b) x(x + 4) = 2(-x – 4) c) x^3 = x d) x^2 – 10x + 25 = 0 e) x^2 – 10x + 24 = 0 f) 2(x + 1)/ 3 – 1 = 3/2 – 1-2x / 4”

  1. a) 2x(x + 3) + 5(x + 3) = 0

    ⇔(x+3)(2x+5)=0

    ⇔\(\left[ \begin{array}{l}x+3=0\\2x+5=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=-3\\x=-5/2\end{array} \right.\) 

     Vậy x=-3; x=-5/2

    b,x(x + 4) = 2(-x – 4)

    ⇔x(x+4)-2(-x-4)=0

    ⇔x(x+4)+2(x+4)=0

    ⇔(x+4)(x+2)=0

    ⇔\(\left[ \begin{array}{l}x+4=0\\x+2=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=-4\\x=-2\end{array} \right.\) 

    Vậy x=-4; x=-2

    c,x³=x

    ⇔x³-x=0

    ⇔x(x²-1)=0

    ⇔x(x-1)(x+1)=0

    ⇔\(\left[ \begin{array}{l}x=0\\x-1=0\\x+1=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=0\\x=1\\x=-1\end{array} \right.\) 

    Vậy x=0;x=±1

    d,x²-10x+25=0

    ⇔(x-5)²=0

    ⇔x-5=0

    ⇔x=5

    Vậy x=5

    e,x²-10x+24=0

    ⇔(x²-10x+25)-1=0

    ⇔(x-5)²-1²=0

    ⇔(x-5-1)(x-5+1)=0

    ⇔(x-6)(x-4)=0

    ⇔\(\left[ \begin{array}{l}x-6=0\\x-4=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=6\\x=4\end{array} \right.\) 

    Vậy x=6;x=4

    f,$\frac{2(x+1)}{3}$ -1=$\frac{3}{2}$ -$\frac{1-2x}{4}$ 

    ⇔$\frac{8(x+1)}{12}$ -12/12=$\frac{18}{12}$ -$\frac{3(1-2x)}{12}$ 

    ⇒8x+8-12=18-3+6x

    ⇔2x=19

    ⇔x=19/2

    Vậy x=19/2

    g,$\frac{3(x+1)}{10}$ = $\frac{2(x-1)}{3}$ + $\frac{4}{5}$

    <=>$\frac{9(x+1)}{30}$= $\frac{20(x-1)}{30}$ +$\frac{24}{30}$

    =>9x+9=20x-20+24

    =>-11x=-5

    <=>x=5/11

    Vậy x=5/11

    h,x²-x-2=0

    ⇔(x-2)(x+1)=0

    ⇔\(\left[ \begin{array}{l}x-2=0\\x+1=0\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\) 

    Vậy x=2;x=-1

    Bình luận

Viết một bình luận