Tìm x: a) 3^x+1 = 9^7 b) 625/5^x = 5^3 c) (-2)^x/-128 = 4 10/07/2021 Bởi Sadie Tìm x: a) 3^x+1 = 9^7 b) 625/5^x = 5^3 c) (-2)^x/-128 = 4
Đáp án: Giải thích các bước giải: $\text{a) $3^{x+1}$ = $9^{7}$.}$ $\text{⇒ $3^{x+1}$ = $3^{14}$.}$ $\text{⇒ x + 1 = 14.}$ $\text{⇒ x = 14 – 1.}$ $\text{⇒ x = 13.}$ $\text{b) $\dfrac{625}{5^x}$ = $5^3$.}$ $\text{⇒ $\dfrac{5^4}{5^x}$ = $5^3$.}$ $\text{⇒ $5^{4-x}$ = $5^3$.}$ $\text{⇒ 4 – x = 3.}$ $\text{⇒ x = 4 – 3.}$ $\text{⇒ x = 1.}$ $\text{c) $\dfrac{(-2)^x}{-128}$ = 4.}$ $\text{⇒ $\dfrac{(-2)^x}{(-2)^7}$ = $2^2$.}$ $\text{⇒ $(-2)^{x-7}$ = $(-2)^2$.}$ $\text{⇒ x – 7 = 2.}$ $\text{⇒ x = 2 + 7.}$ $\text{⇒ x =9.}$ Bình luận
a) `3^(x+1)` = `9^7` => `3^(x+1)` = `3^14` => x + 1 = 14 => x = 13 b) `625/5^x` = `5^3` => `5^4/5^x` = `5^3` => `5^x` = `5^1` => x = 1 c) `(-2)^x/-128` = 4 => `(-2)^x/(-2)^7` = `2^2` => `(-2)^x/(-2)^7` = `(-2)^2` => `(-2)^x` = `(-2)^2` . `(-2)^7` => `(-2)^x` = `(-2)^9` => x = 9 XIN HAY NHẤT Ạ Bình luận
Đáp án:
Giải thích các bước giải:
$\text{a) $3^{x+1}$ = $9^{7}$.}$
$\text{⇒ $3^{x+1}$ = $3^{14}$.}$
$\text{⇒ x + 1 = 14.}$
$\text{⇒ x = 14 – 1.}$
$\text{⇒ x = 13.}$
$\text{b) $\dfrac{625}{5^x}$ = $5^3$.}$
$\text{⇒ $\dfrac{5^4}{5^x}$ = $5^3$.}$
$\text{⇒ $5^{4-x}$ = $5^3$.}$
$\text{⇒ 4 – x = 3.}$
$\text{⇒ x = 4 – 3.}$
$\text{⇒ x = 1.}$
$\text{c) $\dfrac{(-2)^x}{-128}$ = 4.}$
$\text{⇒ $\dfrac{(-2)^x}{(-2)^7}$ = $2^2$.}$
$\text{⇒ $(-2)^{x-7}$ = $(-2)^2$.}$
$\text{⇒ x – 7 = 2.}$
$\text{⇒ x = 2 + 7.}$
$\text{⇒ x =9.}$
a) `3^(x+1)` = `9^7`
=> `3^(x+1)` = `3^14`
=> x + 1 = 14
=> x = 13
b) `625/5^x` = `5^3`
=> `5^4/5^x` = `5^3`
=> `5^x` = `5^1`
=> x = 1
c) `(-2)^x/-128` = 4
=> `(-2)^x/(-2)^7` = `2^2`
=> `(-2)^x/(-2)^7` = `(-2)^2`
=> `(-2)^x` = `(-2)^2` . `(-2)^7`
=> `(-2)^x` = `(-2)^9`
=> x = 9
XIN HAY NHẤT Ạ