Tìm x :
a) ( x + 3 )^2 – x( x + 5 ) = 2
b) ( 5x – 2 )^2 + ( 2 – 5x ) ( 3x + 1 ) = 0
c) x^3 – ( x + 3 ) ( x ^2 – 3x + 9 ) + ( 3x – 1 ) ( 3x + 1 )
GIÚP TUI VS , CẦN GẤP Ạ
Tìm x :
a) ( x + 3 )^2 – x( x + 5 ) = 2
b) ( 5x – 2 )^2 + ( 2 – 5x ) ( 3x + 1 ) = 0
c) x^3 – ( x + 3 ) ( x ^2 – 3x + 9 ) + ( 3x – 1 ) ( 3x + 1 )
GIÚP TUI VS , CẦN GẤP Ạ
Đáp án:
a,`(x + 3)^2 – x(x + 5)= 2`
`<=> x^2 + 6x + 9 – x^2 – 5x = 2`
`<=> x + 9 = 2`
`<=> x = -7`
b, `(5x – 2)^2 + (2 – 5x)(3x + 1) = 0`
`<=> 25x^2 – 20x + 4 + 6x – 15x^2 + 2 – 5x = 0`
`<=> 10x^2 – 19x + 6 = 0`
`<=> 10x^2 – 15x – 4x + 6 = 0`
`<=> 5x.(2x – 3) – 2(2x – 3) = 0`
`<=> (5x – 2)(2x – 3) = 0`
<=> \(\left[ \begin{array}{l}5x – 2 = 0\\2x – 3 = 0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x = 2/5\\x= 3/2\end{array} \right.\)
Vậy `S = {2/5 ; 3/2}`
c, ` x^3 + 27 + ( x + 3 ) ( x – 9 ) = 0`
`<=> (x + 3)(x^2 – 3x + 9) + (x + 3)(x – 9) = 0`
`<=> (x + 3)(x^2 – 3x + 9 + x – 9) = 0`
`<=> (x + 3)(x^2 – 2x) = 0`
`<=> x(x + 3)(x – 2) = 0`
`<=> x = 0` hoặc `x + 3 = 0` hoặc `x – 2 = 0`
`<=> x = 0` hoặc `x = -3` hoặc `x = 2`
Vậy `S = {0 ; -3 ; 2}`
Giải thích các bước giải:
a, (x+3)²-x(x+5)=2
⇔ x²+2.x.3+3²-x²-5x=2
⇔ x²+6x+9-x²-5x=2
⇔ x+9=2
⇔ x=2-9
⇔ x= -7
b, (5x-2)²+(2-5x)(3x+1)=0
⇔ (5x-2)² +2(3x+1)-5x(3x+1)=0
⇔ [(5x)²-2.5x.2+2²]+6x+2-15x²-5x=0
⇔ 25x²-20x+4+x+2-15x²=0
⇔ 10x²-19x+6=0
⇔ 10x²-15x-4x+6=0
⇔ 5x(2x-3)-4(2x-3)=0
⇔ (5x-4)(2x-3)=0
⇔ 5x-4=0 hoặc 2x-3=0
⇔ x=4/5 hoặc x=3/2
c, x³-(x+3)(x²-3x+9)+(3x-1)(3x+1)
= x³-(x³+3³)+[(3x)²-1²]
= x³-x³-27+9x²-1
= 9x²-28
c, x³ + 27 + ( x + 3 ) ( x – 9 ) = 0
⇔ x³+27+x(x-9)+3(x-9)=0
⇔ x³+27+x²-9x+3x-27=0
⇔ x³+x²-6x=0
⇔ x³-2x²+3x²-6x=0
⇔ x²(x-2)+3x(x-2)=0
⇔ (x²+3x)(x-2)=0
⇔ x(x+3)(x-2)=0
⇔ x=0 hoặc x+3=0 hoặc x-2=0
⇔ x=0 hoặc x=-3 hoặc x=2