Tìm x : a ) | 3x – 5 | = | x + 2 | b ) 3x – 2x = -7-5 c ) | -2x – 5 | = | 3-x | 15/09/2021 Bởi Vivian Tìm x : a ) | 3x – 5 | = | x + 2 | b ) 3x – 2x = -7-5 c ) | -2x – 5 | = | 3-x |
a) `|3x-5|=|x+2|` `TH1: 3x-5=x+2` `⇔2x=7` `⇔x=7/2` `TH2: 3x-5=-x-2` `⇔4x=3` `⇔x=3/4` `TH3: -3x+5=x+2` `⇔-4x=-3` `⇔x=3/4 ` `TH4: -3x+5=-x-2` `⇔-2x=-7` `⇔x=7/2` Vậy `x∈{7/2;3/4}` b) `3x-2x=-7-5` `⇔x=-12` Vậy `x=-12` c) `|-2x-5|=|3-x|` `TH1: -2x-5=3-x` `⇔-x=8` `⇔x=-8` `TH2: -2x-5=x-3` `⇔-3x=2` `⇔x=-2/3` `TH3: 2x+5=3-x` `⇔3x=-2` `⇔x=-2/3` `TH4: 2x+5=x-3` `⇔x=-8` Vậy `x∈{-8;-2/3}` Bình luận
$\text{a.|3x-5|=|x+2|}$ ⇔\(\left[ \begin{array}{l}3x-5=x+2 \\3x-5=-x-2\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=\dfrac{7}{2} \\x=\dfrac{3}{4}\end{array} \right.\) $\text{Vậy}$ $x∈ \begin{Bmatrix} \dfrac{7}{2};\dfrac{3}{4} \end{Bmatrix}$ $b.3x-2x=-7-5$ $⇔x=-12$ $\text{Vậy x=-12}$ $c.|-2x-5|=|3-x|$ ⇔\(\left[ \begin{array}{l}-2x-5=3-x\\-2x-5=x-3\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=8\\x=\dfrac{-2}{3}\end{array} \right.\) $\text{ Vậy}$ $x∈ \begin{Bmatrix} 8 ;\dfrac{-2}{3} \end{Bmatrix}$ Bình luận
a)
`|3x-5|=|x+2|`
`TH1: 3x-5=x+2`
`⇔2x=7`
`⇔x=7/2`
`TH2: 3x-5=-x-2`
`⇔4x=3`
`⇔x=3/4`
`TH3: -3x+5=x+2`
`⇔-4x=-3`
`⇔x=3/4 `
`TH4: -3x+5=-x-2`
`⇔-2x=-7`
`⇔x=7/2`
Vậy `x∈{7/2;3/4}`
b)
`3x-2x=-7-5`
`⇔x=-12`
Vậy `x=-12`
c)
`|-2x-5|=|3-x|`
`TH1: -2x-5=3-x`
`⇔-x=8`
`⇔x=-8`
`TH2: -2x-5=x-3`
`⇔-3x=2`
`⇔x=-2/3`
`TH3: 2x+5=3-x`
`⇔3x=-2`
`⇔x=-2/3`
`TH4: 2x+5=x-3`
`⇔x=-8`
Vậy `x∈{-8;-2/3}`
$\text{a.|3x-5|=|x+2|}$
⇔\(\left[ \begin{array}{l}3x-5=x+2 \\3x-5=-x-2\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\dfrac{7}{2} \\x=\dfrac{3}{4}\end{array} \right.\)
$\text{Vậy}$ $x∈ \begin{Bmatrix} \dfrac{7}{2};\dfrac{3}{4} \end{Bmatrix}$
$b.3x-2x=-7-5$
$⇔x=-12$
$\text{Vậy x=-12}$
$c.|-2x-5|=|3-x|$
⇔\(\left[ \begin{array}{l}-2x-5=3-x\\-2x-5=x-3\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=8\\x=\dfrac{-2}{3}\end{array} \right.\)
$\text{ Vậy}$ $x∈ \begin{Bmatrix} 8 ;\dfrac{-2}{3} \end{Bmatrix}$