Tìm x : a ) | 3x – 5 | = | x + 2 | b ) 3x – 2x = -7-5 c ) | -2x – 5 | = | 3-x |

Tìm x :
a ) | 3x – 5 | = | x + 2 |
b ) 3x – 2x = -7-5
c ) | -2x – 5 | = | 3-x |

0 bình luận về “Tìm x : a ) | 3x – 5 | = | x + 2 | b ) 3x – 2x = -7-5 c ) | -2x – 5 | = | 3-x |”

  1. a)

    `|3x-5|=|x+2|`

    `TH1: 3x-5=x+2`

    `⇔2x=7`

    `⇔x=7/2`

    `TH2: 3x-5=-x-2`

    `⇔4x=3`

    `⇔x=3/4`

    `TH3: -3x+5=x+2`

    `⇔-4x=-3`

    `⇔x=3/4 `

    `TH4: -3x+5=-x-2`

    `⇔-2x=-7`

    `⇔x=7/2`

    Vậy `x∈{7/2;3/4}`

    b)

    `3x-2x=-7-5`

    `⇔x=-12`

    Vậy `x=-12`

    c)

    `|-2x-5|=|3-x|`

    `TH1: -2x-5=3-x`

    `⇔-x=8`

    `⇔x=-8`

    `TH2: -2x-5=x-3`

    `⇔-3x=2`

    `⇔x=-2/3`

    `TH3: 2x+5=3-x`

    `⇔3x=-2`

    `⇔x=-2/3`

    `TH4: 2x+5=x-3`

    `⇔x=-8`

     Vậy `x∈{-8;-2/3}`

    Bình luận
  2. $\text{a.|3x-5|=|x+2|}$

    ⇔\(\left[ \begin{array}{l}3x-5=x+2 \\3x-5=-x-2\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=\dfrac{7}{2} \\x=\dfrac{3}{4}\end{array} \right.\) 

    $\text{Vậy}$ $x∈ \begin{Bmatrix} \dfrac{7}{2};\dfrac{3}{4} \end{Bmatrix}$

    $b.3x-2x=-7-5$

    $⇔x=-12$

    $\text{Vậy x=-12}$

    $c.|-2x-5|=|3-x|$

    ⇔\(\left[ \begin{array}{l}-2x-5=3-x\\-2x-5=x-3\end{array} \right.\) 

    ⇔\(\left[ \begin{array}{l}x=8\\x=\dfrac{-2}{3}\end{array} \right.\) 

    $\text{ Vậy}$ $x∈ \begin{Bmatrix} 8 ;\dfrac{-2}{3} \end{Bmatrix}$

    Bình luận

Viết một bình luận