Tìm x:
a, $\frac{x+10}{9}$ = $\frac{x-5}{7}$
b, $\frac{x+8}{20}$ = $\frac{5}{x+8}$
c, $\frac{x+4}{5}$ = $\frac{x-8}{6}$
d, $\frac{x-2}{9}$ = $\frac{4}{x-2}$
Giúp mk vs, chiều nay mk đi hk r /(ㄒoㄒ)/~~
Tìm x:
a, $\frac{x+10}{9}$ = $\frac{x-5}{7}$
b, $\frac{x+8}{20}$ = $\frac{5}{x+8}$
c, $\frac{x+4}{5}$ = $\frac{x-8}{6}$
d, $\frac{x-2}{9}$ = $\frac{4}{x-2}$
Giúp mk vs, chiều nay mk đi hk r /(ㄒoㄒ)/~~
$a$) $\dfrac{x+10}{9} = \dfrac{x-5}{7}$
$⇔ 7(x+10) = 9(x-5)$
$⇔7x + 70 = 9x – 45$
$⇔ 70 + 45 = 9x-7x$
$⇔ 2x = 115$
$⇔ x = \dfrac{115}{2}$
Vậy $x = \dfrac{115}{2}$
$b$) $\dfrac{x+8}{20} = \dfrac{5}{x+8}$
$⇔ (x+8)^2 = 100$
$⇔ x+8 = ±10$
$⇒$ \(\left[ \begin{array}{l}x=2\\x=-18\end{array} \right.\)
Vậy $x$ $∈$ `{-18;2}`
$c$) $\dfrac{x+4}{5} = \dfrac{x-8}{6}$
$⇔ 6(x+4) = 5(x-8)$
$⇔ 6x + 24 = 5x – 40$
$⇔ 24+40 = 5x-6x$
$⇔ -x = 64$
$⇔ x = -64$
Vậy $x=-64$
$d$) $\dfrac{x-2}{9} = \dfrac{4}{x-2}$
$⇔ (x-2)^2 = 36$
$⇒ x-2 = ± 6$
$⇒$ \(\left[ \begin{array}{l}x=8\\x=-4\end{array} \right.\)
Vậy $x$ $∈$ `{-4;8}`
Đáp án:
\(a,\ x=\dfrac{115}{2}\\ b,\ x=2\ \text{hoặc}\ x=(-18)\\ c,\ x=(-64)\\ d,\ x=8\ \text{hoặc}\ x=(-4)\)
Giải thích các bước giải:
\(a,\ \dfrac{x+10}{9}=\dfrac{x-5}{7}\\ ⇔7(x+10)=9(x-5)\\ ⇔7x+70=9x-45\\ ⇔7x-9x=-45-70\\ ⇔-2x=-115\\ ⇔x=\dfrac{-115}{-2}=\dfrac{115}{2}\\ \text{Vậy x = $\dfrac{115}{2}$}\\ b,\ \dfrac{x+8}{20}=\dfrac{5}{x+8}\\ ⇔(x+8)^{2}=5.20\\ ⇔(x+8)^{2}=100\\ ⇔(x+8)^{2}=(±10)^{2}\\ ⇔\left[ \begin{array}{l}x+8=10\\x+8=-10\end{array} \right.\\ ⇔\left[ \begin{array}{l}x=2\\x=-18\end{array} \right.\\ \text{Vậy x = 2 hoặc x = (-18)}\\ c,\ \dfrac{x+4}{5}=\dfrac{x-8}{6}\\ ⇔6(x+4)=5(x-8)\\ ⇔6x+24=5x-40\\ ⇔6x-5x=-40-24\\ ⇔x=-64\\ \text{Vậy x = (-64)}\\ d,\ \dfrac{x-2}{9}=\dfrac{4}{x-2}\\ ⇔(x-2)^{2}=9.4\\ ⇔(x-2)^{2}=36\\ ⇔(x-2)^{2}=(±6)^{2}\\ ⇔\left[ \begin{array}{l}x-2=6\\x-2=-6\end{array} \right.\\ ⇔\left[ \begin{array}{l}x=8\\x=-4\end{array} \right.\\ \text{Vậy x = 8 hoặc x = (-4)}\)
chúc em học tốt!