Tìm x: a) √ $\frac{2x-3}{x-1}$ =2 b) √4x-12 + √x-3 = $\frac{1}{3}$ × √9x-27 +4 c)2x-3 √2x-1 -5=0 10/08/2021 Bởi Hailey Tìm x: a) √ $\frac{2x-3}{x-1}$ =2 b) √4x-12 + √x-3 = $\frac{1}{3}$ × √9x-27 +4 c)2x-3 √2x-1 -5=0
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\\sqrt {\dfrac{{2x – 3}}{{x – 1}}} = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\left[ \begin{array}{l}x \ge \dfrac{3}{2}\\x < 1\end{array} \right.} \right)\\ \Leftrightarrow \dfrac{{2x – 3}}{{x – 1}} = 4\\ \Leftrightarrow 2x – 3 = 4.\left( {x – 1} \right)\\ \Leftrightarrow 2x – 3 = 4x – 4\\ \Leftrightarrow 4x – 2x = – 3 + 4\\ \Leftrightarrow 2x = 1\\ \Leftrightarrow x = \dfrac{1}{2}\,\,\,\,\left( {t/m} \right)\\b,\\\sqrt {4x – 12} + \sqrt {x – 3} = \dfrac{1}{3}\sqrt {9x – 27} + 4\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge 3} \right)\\ \Leftrightarrow \sqrt {4.\left( {x – 3} \right)} + \sqrt {x – 3} = \dfrac{1}{3}.\sqrt {9.\left( {x – 3} \right)} + 4\\ \Leftrightarrow 2.\sqrt {x – 3} + \sqrt {x – 3} = \dfrac{1}{3}.3.\sqrt {x – 3} + 4\\ \Leftrightarrow 2\sqrt {x – 4} = 4\\ \Leftrightarrow \sqrt {x – 4} = 2\\ \Leftrightarrow x – 4 = 4\\ \Leftrightarrow x = 8\\c,\\2x – 3\sqrt {2x – 1} – 5 = 0\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge \dfrac{1}{2}} \right)\\ \Leftrightarrow \left( {2x – 1} \right) – 3\sqrt {2x – 1} – 4 = 0\\ \Leftrightarrow \left[ {\left( {2x – 1} \right) – 4\sqrt {2x – 1} } \right] + \left[ {\sqrt {2x – 1} – 4} \right] = 0\\ \Leftrightarrow \sqrt {2x – 1} .\left( {\sqrt {2x – 1} – 4} \right) + \left( {\sqrt {2x – 1} – 4} \right) = 0\\ \Leftrightarrow \left( {\sqrt {2x – 1} – 4} \right)\left( {\sqrt {2x – 1} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt {2x – 1} = 4\\\sqrt {2x – 1} = – 1\end{array} \right.\\ \Rightarrow \sqrt {2x – 1} = 4\\ \Leftrightarrow 2x – 1 = 16\\ \Leftrightarrow x = \dfrac{{17}}{2}\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\sqrt {\dfrac{{2x – 3}}{{x – 1}}} = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\left[ \begin{array}{l}
x \ge \dfrac{3}{2}\\
x < 1
\end{array} \right.} \right)\\
\Leftrightarrow \dfrac{{2x – 3}}{{x – 1}} = 4\\
\Leftrightarrow 2x – 3 = 4.\left( {x – 1} \right)\\
\Leftrightarrow 2x – 3 = 4x – 4\\
\Leftrightarrow 4x – 2x = – 3 + 4\\
\Leftrightarrow 2x = 1\\
\Leftrightarrow x = \dfrac{1}{2}\,\,\,\,\left( {t/m} \right)\\
b,\\
\sqrt {4x – 12} + \sqrt {x – 3} = \dfrac{1}{3}\sqrt {9x – 27} + 4\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge 3} \right)\\
\Leftrightarrow \sqrt {4.\left( {x – 3} \right)} + \sqrt {x – 3} = \dfrac{1}{3}.\sqrt {9.\left( {x – 3} \right)} + 4\\
\Leftrightarrow 2.\sqrt {x – 3} + \sqrt {x – 3} = \dfrac{1}{3}.3.\sqrt {x – 3} + 4\\
\Leftrightarrow 2\sqrt {x – 4} = 4\\
\Leftrightarrow \sqrt {x – 4} = 2\\
\Leftrightarrow x – 4 = 4\\
\Leftrightarrow x = 8\\
c,\\
2x – 3\sqrt {2x – 1} – 5 = 0\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge \dfrac{1}{2}} \right)\\
\Leftrightarrow \left( {2x – 1} \right) – 3\sqrt {2x – 1} – 4 = 0\\
\Leftrightarrow \left[ {\left( {2x – 1} \right) – 4\sqrt {2x – 1} } \right] + \left[ {\sqrt {2x – 1} – 4} \right] = 0\\
\Leftrightarrow \sqrt {2x – 1} .\left( {\sqrt {2x – 1} – 4} \right) + \left( {\sqrt {2x – 1} – 4} \right) = 0\\
\Leftrightarrow \left( {\sqrt {2x – 1} – 4} \right)\left( {\sqrt {2x – 1} + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt {2x – 1} = 4\\
\sqrt {2x – 1} = – 1
\end{array} \right.\\
\Rightarrow \sqrt {2x – 1} = 4\\
\Leftrightarrow 2x – 1 = 16\\
\Leftrightarrow x = \dfrac{{17}}{2}
\end{array}\)