Tìm x:
a) $\sqrt[]{4x-20}$ + 3$\sqrt[]{\frac{x-5}{9}}$-$\frac{1}{3}\sqrt[]{9x-45}$=4
b) $\frac{2}{3}$ $\sqrt[]{9x-9}$- $\frac{1}{4}$ $\sqrt[]{16x-16}$++27 $\sqrt[]{\frac{x-1}{81}}$ = 4
Tìm x:
a) $\sqrt[]{4x-20}$ + 3$\sqrt[]{\frac{x-5}{9}}$-$\frac{1}{3}\sqrt[]{9x-45}$=4
b) $\frac{2}{3}$ $\sqrt[]{9x-9}$- $\frac{1}{4}$ $\sqrt[]{16x-16}$++27 $\sqrt[]{\frac{x-1}{81}}$ = 4
Đáp án:
b) x=2
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 5\\
\sqrt {4\left( {x – 5} \right)} + 3.\dfrac{{\sqrt {x – 5} }}{3} – \dfrac{1}{3}.\sqrt {9\left( {x – 5} \right)} = 4\\
\to 2\sqrt {x – 5} + \sqrt {x – 5} – \dfrac{1}{3}.3\sqrt {x – 5} = 4\\
\to \left( {2 + 1 – 1} \right)\sqrt {x – 5} = 4\\
\to 2\sqrt {x – 5} = 4\\
\to \sqrt {x – 5} = 2\\
\to x – 5 = 4\\
\to x = 9\left( {TM} \right)\\
b)DK:x \ge 1\\
\dfrac{2}{3}.\sqrt {9\left( {x – 1} \right)} – \dfrac{1}{4}.\sqrt {16\left( {x – 1} \right)} + 27.\dfrac{{\sqrt {x – 1} }}{9} = 4\\
\to 2\sqrt {x – 1} – \sqrt {x – 1} + 3\sqrt {x – 1} = 4\\
\to 4\sqrt {x – 1} = 4\\
\to \sqrt {x – 1} = 1\\
\to x – 1 = 1\\
\to x = 2\left( {TM} \right)
\end{array}\)
Đáp án:a, x=9
b, x=2
Giải thích các bước
dưới ảnh