tìm x biết 1.x(x+1)-x^2+1=0 2.4x(x-2)-6+3x=0 3.x(x+2)-3(x+2)=0 4.8x(x-5)-2x+10=0 5.x(2x-3)-2(3-2x)=0 14/08/2021 Bởi Daisy tìm x biết 1.x(x+1)-x^2+1=0 2.4x(x-2)-6+3x=0 3.x(x+2)-3(x+2)=0 4.8x(x-5)-2x+10=0 5.x(2x-3)-2(3-2x)=0
Đáp án: Giải thích các bước giải: 1) $x(x+2)-x^{2}+1=0_{}$ ⇔ $x^{2}-x-^{2}+1=0_{}$ ⇔ $x+1=0_{}$ ⇔ $x=-1_{}$ 2) $4x(x-1)-3(x+2)=0_{}$ ⇔ $4x(x-2)+3x-6=0_{}$ ⇔ $4x(x-2)+3(x-2)=0_{}$ ⇔ $(x-2)(4x+3)=0_{}$ ⇔ \(\left[ \begin{array}{l}x-2=0\\4x+3=0\end{array} \right.\)⇔ \(\left[ \begin{array}{l}x=2\\x=-\frac{3}{4}\end{array} \right.\) 3) $x(x+2)-3(x+2)=0_{}$ ⇔ $(x-3)(x+2)=0_{}$ ⇔ \(\left[ \begin{array}{l}x+2=0\\x-3=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=-2\\x=3\end{array} \right.\) 4) $8x(x-5)-2x+10=0_{}$ ⇔ $8x(x-5)-2(x-5)=0_{}$ ⇔ $(8x-2)(x-5)=0_{}$ ⇔ \(\left[ \begin{array}{l}8x-2=0\\x-5=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=\frac{1}{4}\\x=5\end{array} \right.\) 5) $x(2x-3)-2(3-2x)=0_{}$ ⇔ $x(2x-3)+2(2x-3)=0_{}$ ⇔ $(x+2)(2x-3)=0_{}$ ⇔ \(\left[ \begin{array}{l}x+2=0\\2x-3=0\end{array} \right.\) \(\left[ \begin{array}{l}x=-2\\x=\frac{3}{2}\end{array} \right.\) Bình luận
1. x(x+1)-x²+1=0 x²+x-x²+1 = 0 x+1 = 0 x= -1 2. 4x(x-2)-6+3x=0 4x(x-2)-3(2-x) =0 4x(x-2) + 3(x-2) = 0 (x-2)(4x+3) = 0 -TH1: x-2=0 –>x=2 – TH2: 4x+3=0 –> x=-3/4 3. x(x+2)-3(x+2)=0 (x+2)(x-3)=0 – TH1: x+2=0 –> x=-2 – TH2: x-3 = 0 –> x=3 4. 8x(x-5)-2x+10=0 8x(x-5)-2(x-5)=0 (x-5)(8x-2)=0 -Th1: x-5=0 –> x=5 -Th2: 8x-2=0 –> x= 1/4 5..x(2x-3)-2(3-2x)=0 x(2x-3)+2(2x-3)=0 (2x-3)(x+2)=0 -TH1: 2x-3=0–> X=3/2 -TH2:x+2=0–> x=-2 NHỚ VOTE 5 SAO CHO MIK NHÉ. THANK YOU!! Bình luận
Đáp án:
Giải thích các bước giải:
1) $x(x+2)-x^{2}+1=0_{}$
⇔ $x^{2}-x-^{2}+1=0_{}$
⇔ $x+1=0_{}$
⇔ $x=-1_{}$
2) $4x(x-1)-3(x+2)=0_{}$
⇔ $4x(x-2)+3x-6=0_{}$
⇔ $4x(x-2)+3(x-2)=0_{}$
⇔ $(x-2)(4x+3)=0_{}$
⇔ \(\left[ \begin{array}{l}x-2=0\\4x+3=0\end{array} \right.\)⇔ \(\left[ \begin{array}{l}x=2\\x=-\frac{3}{4}\end{array} \right.\)
3) $x(x+2)-3(x+2)=0_{}$
⇔ $(x-3)(x+2)=0_{}$
⇔ \(\left[ \begin{array}{l}x+2=0\\x-3=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=-2\\x=3\end{array} \right.\)
4) $8x(x-5)-2x+10=0_{}$
⇔ $8x(x-5)-2(x-5)=0_{}$
⇔ $(8x-2)(x-5)=0_{}$
⇔ \(\left[ \begin{array}{l}8x-2=0\\x-5=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=\frac{1}{4}\\x=5\end{array} \right.\)
5) $x(2x-3)-2(3-2x)=0_{}$
⇔ $x(2x-3)+2(2x-3)=0_{}$
⇔ $(x+2)(2x-3)=0_{}$
⇔ \(\left[ \begin{array}{l}x+2=0\\2x-3=0\end{array} \right.\) \(\left[ \begin{array}{l}x=-2\\x=\frac{3}{2}\end{array} \right.\)
1. x(x+1)-x²+1=0
x²+x-x²+1 = 0
x+1 = 0
x= -1
2. 4x(x-2)-6+3x=0
4x(x-2)-3(2-x) =0
4x(x-2) + 3(x-2) = 0
(x-2)(4x+3) = 0
-TH1: x-2=0 –>x=2
– TH2: 4x+3=0 –> x=-3/4
3. x(x+2)-3(x+2)=0
(x+2)(x-3)=0
– TH1: x+2=0 –> x=-2
– TH2: x-3 = 0 –> x=3
4. 8x(x-5)-2x+10=0
8x(x-5)-2(x-5)=0
(x-5)(8x-2)=0
-Th1: x-5=0 –> x=5
-Th2: 8x-2=0 –> x= 1/4
5..x(2x-3)-2(3-2x)=0
x(2x-3)+2(2x-3)=0
(2x-3)(x+2)=0
-TH1: 2x-3=0–> X=3/2
-TH2:x+2=0–> x=-2
NHỚ VOTE 5 SAO CHO MIK NHÉ. THANK YOU!!