Tìm x, biết: |x+1/3|=4-1 (/ Có nghĩa là 1phần 3) 19/11/2021 Bởi Harper Tìm x, biết: |x+1/3|=4-1 (/ Có nghĩa là 1phần 3)
Đáp án: \(\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=\dfrac{-10}{3}\end{array} \right.\) Giải thích các bước giải: `|x+1/3|=4-1``=>|x+1/3|=3``=>`\(\left[ \begin{array}{l}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=3-\dfrac{1}{3}\\x=-3-\dfrac{1}{3}\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=\dfrac{9}{3}-\dfrac{1}{3}\\x=\dfrac{-9}{3}-\dfrac{1}{3}\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=\dfrac{-10}{3}\end{array} \right.\) Bình luận
Đáp án: $\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{array} \right.$ Giải thích các bước giải: $\begin{array}{l}|x+\dfrac{1}{3}|=4-1\\→|x+\dfrac{1}{3}|=3\\→\left[ \begin{array}{l}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{array} \right.\\→\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{array} \right.\\Vậy \,\, x=\dfrac{8}{3} \,\, or \,\, x=-\dfrac{10}{3}\\\end{array}$ Bình luận
Đáp án:
\(\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=\dfrac{-10}{3}\end{array} \right.\)
Giải thích các bước giải:
`|x+1/3|=4-1`
`=>|x+1/3|=3`
`=>`\(\left[ \begin{array}{l}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x=3-\dfrac{1}{3}\\x=-3-\dfrac{1}{3}\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x=\dfrac{9}{3}-\dfrac{1}{3}\\x=\dfrac{-9}{3}-\dfrac{1}{3}\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=\dfrac{-10}{3}\end{array} \right.\)
Đáp án:
$\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{array} \right.$
Giải thích các bước giải:
$\begin{array}{l}|x+\dfrac{1}{3}|=4-1\\→|x+\dfrac{1}{3}|=3\\→\left[ \begin{array}{l}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{array} \right.\\→\left[ \begin{array}{l}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{array} \right.\\Vậy \,\, x=\dfrac{8}{3} \,\, or \,\, x=-\dfrac{10}{3}\\\end{array}$