tim x biet a, 1/3-|5/4-2x|=1/4 b, 1/2-|x+1/5|=1/3 c, 3/4-|2x+1|=7/8 d, 2|2x-3|=1/2 e, 7,5-3|5-2x|=-4,5 23/08/2021 Bởi Genesis tim x biet a, 1/3-|5/4-2x|=1/4 b, 1/2-|x+1/5|=1/3 c, 3/4-|2x+1|=7/8 d, 2|2x-3|=1/2 e, 7,5-3|5-2x|=-4,5
`a, 1/3-|5/4-2x|=1/4` `⇔ |5/4 – 2x| = 1/{12}` `⇒` \(\left[ \begin{array}{l}2x=\dfrac{7}{6}\\2x=\dfrac{4}{3}\end{array} \right.\) $⇒$ \(\left[ \begin{array}{l}x=\dfrac{7}{12}\\x=\dfrac{2}{3}\end{array} \right.\) Vậy $x$ $∈$ `{7/{12};2/3}` $b$) `1/2-|x+1/5|=1/3` `⇔ |x+1/5| = 1/6` `⇒` \(\left[ \begin{array}{l}x=\dfrac{-1}{30}\\x=\dfrac{-11}{30}\end{array} \right.\) Vậy $x$ $∈$ `{-1/{30};{-11}/{30}}` `c`) `3/4-|2x+1|=7/8` `⇔ |2x+1| = -1/8` `⇒` `x` `∈` $∅$ vì $|2x+1|$ $≥$ $0$ $∀$ $x$ Vậy `x` `∈` $∅$ $d$) `2|2x-3| = 1/2` `⇔ |2x-3| =1/4` `⇒` \(\left[ \begin{array}{l}2x=\dfrac{13}{4}\\2x=\dfrac{11}{4}\end{array} \right.\) $⇒$ \(\left[ \begin{array}{l}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{array} \right.\) Vậy $x$ $∈$ `{{13}/8;{11}/8}` $e$) `7,5 – 3|5-2x| = -4,5` $⇔ 3|5-2x| =12$ $⇔ |5-2x| = 4$ $⇒$ \(\left[ \begin{array}{l}2x=1\\2x=9\end{array} \right.\) $⇔$ \(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{array} \right.\) Vậy $x$ $∈$ `{1/2;9/2}` Bình luận
`a, 1/3-|5/4-2x|=1/4`
`⇔ |5/4 – 2x| = 1/{12}`
`⇒` \(\left[ \begin{array}{l}2x=\dfrac{7}{6}\\2x=\dfrac{4}{3}\end{array} \right.\)
$⇒$ \(\left[ \begin{array}{l}x=\dfrac{7}{12}\\x=\dfrac{2}{3}\end{array} \right.\)
Vậy $x$ $∈$ `{7/{12};2/3}`
$b$) `1/2-|x+1/5|=1/3`
`⇔ |x+1/5| = 1/6`
`⇒` \(\left[ \begin{array}{l}x=\dfrac{-1}{30}\\x=\dfrac{-11}{30}\end{array} \right.\)
Vậy $x$ $∈$ `{-1/{30};{-11}/{30}}`
`c`) `3/4-|2x+1|=7/8`
`⇔ |2x+1| = -1/8`
`⇒` `x` `∈` $∅$ vì $|2x+1|$ $≥$ $0$ $∀$ $x$
Vậy `x` `∈` $∅$
$d$) `2|2x-3| = 1/2`
`⇔ |2x-3| =1/4`
`⇒` \(\left[ \begin{array}{l}2x=\dfrac{13}{4}\\2x=\dfrac{11}{4}\end{array} \right.\)
$⇒$ \(\left[ \begin{array}{l}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{array} \right.\)
Vậy $x$ $∈$ `{{13}/8;{11}/8}`
$e$) `7,5 – 3|5-2x| = -4,5`
$⇔ 3|5-2x| =12$
$⇔ |5-2x| = 4$
$⇒$ \(\left[ \begin{array}{l}2x=1\\2x=9\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{array} \right.\)
Vậy $x$ $∈$ `{1/2;9/2}`
Bạn xem hình