tìm x biết a)x/2+x^2/8=0 b)4-x=2(x-4)^2 c)(x^2+1)(2x-1)+2x=4 06/09/2021 Bởi Reagan tìm x biết a)x/2+x^2/8=0 b)4-x=2(x-4)^2 c)(x^2+1)(2x-1)+2x=4
a, $\frac{x}{2}$ + $\frac{x²}{8}$=0 <=> $\frac{4x}{8}$ + $\frac{x²}{8}$=0 <=> 4x+ x²=0 <=> x(x+4)=0 TH1: x=0 TH2: x+4=0 <=> x=-4 Vậy x ∈ {0;-4} b, 4-x=2(x-4)² <=> 2(x-4)²+ (x-4)=0 <=> (x-4)(2x-8+1)=0 <=> (x-4)(2x-7)=0 TH1: x-4=0 <=> x=4 TH2: 2x-7=0 <=> x=7/2 Vậy x∈ {4;7/2} c, (x²+1)(2x-1)+2x=4 <=> 2x³- x²+ 2x-1 +2x-4=0 <=> 2x³- x²+ 4x-5=0 <=> 2x³- 2x²+ x²- x+ 5x-5=0 <=> 2x²(x-1)+ x(x-1)+ 5(x-1)=0 <=> (x-1)(2x²+x+5)=0 <=> x-1= 0 (vì 2x²+x+5= 2(x+1/4)²+ 39/8 luôn lớn hơn 0) <=> x=1 Vậy x=1 Bình luận
a)x/2+x^2/8=0 ⇔ 4x/8 + x²/8 = 0 ⇔ $\frac{x^2+4x}{8}$ = 0 ⇔ x² + 4x = 0 ⇔ x(x+4)=0 ⇔ \(\left[ \begin{array}{l}x=0\\x+4=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=0\\x=-4\end{array} \right.\) b)4-x=2(x-4)^2 ⇔ 4 -x = 2(x² – 8x + 16) ⇔ 4 – x = 2x² – 16x + 32 ⇔ 4 – 32 = 2x² – 16x + x ⇔ -28 = 2x² – 15x ⇒ 2x² – 15x + 28 = 0 ⇔ (x-4)(2x-7)=0 ⇔ \(\left[ \begin{array}{l}x-4=0\\2x-7=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=4\\x=7/2\end{array} \right.\) c)(x^2+1)(2x-1)+2x=4 ⇔ 2x³ – x² + 2x – 1 + 2x = 4 ⇔ 2x³ – x² + 2x – 1 + 2x – 4 = 0 ⇔ 2x³ – x² + 4x – 5 = 0 ⇔ (x-1)(2x² + x + 5) = 0 Vì 2x² + x + 5 ≥ 0 ⇒ x – 1 = 0 ⇒ x =1 Bình luận
a, $\frac{x}{2}$ + $\frac{x²}{8}$=0
<=> $\frac{4x}{8}$ + $\frac{x²}{8}$=0
<=> 4x+ x²=0
<=> x(x+4)=0
TH1: x=0
TH2: x+4=0 <=> x=-4
Vậy x ∈ {0;-4}
b, 4-x=2(x-4)²
<=> 2(x-4)²+ (x-4)=0
<=> (x-4)(2x-8+1)=0
<=> (x-4)(2x-7)=0
TH1: x-4=0 <=> x=4
TH2: 2x-7=0 <=> x=7/2
Vậy x∈ {4;7/2}
c, (x²+1)(2x-1)+2x=4
<=> 2x³- x²+ 2x-1 +2x-4=0
<=> 2x³- x²+ 4x-5=0
<=> 2x³- 2x²+ x²- x+ 5x-5=0
<=> 2x²(x-1)+ x(x-1)+ 5(x-1)=0
<=> (x-1)(2x²+x+5)=0
<=> x-1= 0 (vì 2x²+x+5= 2(x+1/4)²+ 39/8 luôn lớn hơn 0)
<=> x=1
Vậy x=1
a)x/2+x^2/8=0
⇔ 4x/8 + x²/8 = 0
⇔ $\frac{x^2+4x}{8}$ = 0
⇔ x² + 4x = 0
⇔ x(x+4)=0
⇔ \(\left[ \begin{array}{l}x=0\\x+4=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=0\\x=-4\end{array} \right.\)
b)4-x=2(x-4)^2
⇔ 4 -x = 2(x² – 8x + 16)
⇔ 4 – x = 2x² – 16x + 32
⇔ 4 – 32 = 2x² – 16x + x
⇔ -28 = 2x² – 15x
⇒ 2x² – 15x + 28 = 0
⇔ (x-4)(2x-7)=0
⇔ \(\left[ \begin{array}{l}x-4=0\\2x-7=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=4\\x=7/2\end{array} \right.\)
c)(x^2+1)(2x-1)+2x=4
⇔ 2x³ – x² + 2x – 1 + 2x = 4
⇔ 2x³ – x² + 2x – 1 + 2x – 4 = 0
⇔ 2x³ – x² + 4x – 5 = 0
⇔ (x-1)(2x² + x + 5) = 0
Vì 2x² + x + 5 ≥ 0 ⇒ x – 1 = 0 ⇒ x =1