tìm x biết a)x/2+x^2/8=0 b)4-x=2(x-4)^2 c)(x^2+1)(2x-1)+2x=4

tìm x biết
a)x/2+x^2/8=0
b)4-x=2(x-4)^2
c)(x^2+1)(2x-1)+2x=4

0 bình luận về “tìm x biết a)x/2+x^2/8=0 b)4-x=2(x-4)^2 c)(x^2+1)(2x-1)+2x=4”

  1. a, $\frac{x}{2}$ + $\frac{x²}{8}$=0

    <=> $\frac{4x}{8}$ + $\frac{x²}{8}$=0

    <=> 4x+ x²=0

    <=> x(x+4)=0

    TH1: x=0

    TH2: x+4=0 <=> x=-4

    Vậy x ∈ {0;-4}

    b, 4-x=2(x-4)²

    <=> 2(x-4)²+ (x-4)=0

    <=> (x-4)(2x-8+1)=0

    <=> (x-4)(2x-7)=0

    TH1: x-4=0 <=> x=4

    TH2: 2x-7=0 <=> x=7/2

    Vậy x∈ {4;7/2}

    c, (x²+1)(2x-1)+2x=4

    <=> 2x³- x²+ 2x-1 +2x-4=0

    <=> 2x³- x²+ 4x-5=0

    <=> 2x³- 2x²+ x²- x+ 5x-5=0

    <=> 2x²(x-1)+ x(x-1)+ 5(x-1)=0

    <=> (x-1)(2x²+x+5)=0

    <=> x-1= 0 (vì 2x²+x+5= 2(x+1/4)²+ 39/8 luôn lớn hơn 0)

     <=> x=1

    Vậy x=1

    Bình luận
  2. a)x/2+x^2/8=0

    ⇔ 4x/8 + x²/8 = 0

    ⇔ $\frac{x^2+4x}{8}$ = 0

    ⇔ x² + 4x = 0

    ⇔ x(x+4)=0

    ⇔ \(\left[ \begin{array}{l}x=0\\x+4=0\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x=0\\x=-4\end{array} \right.\) 

    b)4-x=2(x-4)^2

    ⇔ 4 -x = 2(x² – 8x + 16)

    ⇔ 4 – x = 2x² – 16x + 32

    ⇔ 4 – 32 = 2x² – 16x + x

    ⇔ -28 = 2x² – 15x

    ⇒ 2x² – 15x + 28 = 0

    ⇔ (x-4)(2x-7)=0

    ⇔ \(\left[ \begin{array}{l}x-4=0\\2x-7=0\end{array} \right.\) 

    ⇔ \(\left[ \begin{array}{l}x=4\\x=7/2\end{array} \right.\) 

    c)(x^2+1)(2x-1)+2x=4

    ⇔ 2x³ – x² + 2x – 1 + 2x = 4

    ⇔ 2x³ – x² + 2x – 1 + 2x – 4 = 0

    ⇔ 2x³ – x² + 4x – 5 = 0

    ⇔ (x-1)(2x² + x + 5) = 0

    Vì 2x² + x + 5 ≥ 0 ⇒ x – 1 = 0 ⇒ x  =1

     

    Bình luận

Viết một bình luận