Tìm x,biết: a) (3-x)(x+2)>0 b) (x-2)(x+2020)>0

Tìm x,biết:
a) (3-x)(x+2)>0
b) (x-2)(x+2020)>0

0 bình luận về “Tìm x,biết: a) (3-x)(x+2)>0 b) (x-2)(x+2020)>0”

  1. Đáp án:

     

    Giải thích các bước giải:

    a) (3-x)(x+2)>0

    $\left \{ {{3-x>0} \atop {x+2>0}} \right.$

    $\left \{ {{x<3} \atop {x>-2}} \right.$

    ⇒-2<x<3

    b,(x-2)(x+2020)>0

    $\left \{ {{x-2>0} \atop {x+2020>0}} \right.$

    $\left \{ {{x>2} \atop {x>-2020}} \right.$

    Bình luận
  2. ` a) ` ` (3 – x)(x + 2) > 0 `

    ` => ` \(\left[ \begin{array}{l}\left \{ {{3-x>0} \atop {x+2>0}} \right. \\\left \{ {{3-x<0} \atop {x+2<0}} \right. \end{array} \right.\) 

    ` => ` \(\left[ \begin{array}{l}\left \{ {{x>3} \atop {x>-2}} \right. \\\left \{ {{x<3} \atop {x<-2}} \right. \end{array} \right.\) 

    ` => ` \(\left[ \begin{array}{l}x>3\\x<-2\end{array} \right.\) 

    ` b) ` ` (x – 2)(x + 2020) > 0 `

    ` => ` \(\left[ \begin{array}{l}\left \{ {{x-2>0} \atop {x+2020>0}} \right. \\\left \{ {{x-2<0} \atop {x+2020<0}} \right. \end{array} \right.\) 

    ` => ` \(\left[ \begin{array}{l}\left \{ {{x>2} \atop {x>-2020}} \right. \\\left \{ {{x<2} \atop {x<-2020}} \right. \end{array} \right.\)

    ` => ` \(\left[ \begin{array}{l}x>2\\x<-2020\end{array} \right.\) 

    Bình luận

Viết một bình luận