Tìm x, biết: ($\frac{1}{2}$ + $\frac{1}{3}$ + …….. + $\frac{1}{2020}$).x = $\frac{2019}{1}$ + $\frac{2018}{2}$ + ……. +$\frac{2}{2018}$ + $\fra

Tìm x, biết:
($\frac{1}{2}$ + $\frac{1}{3}$ + …….. + $\frac{1}{2020}$).x = $\frac{2019}{1}$ + $\frac{2018}{2}$ + ……. +$\frac{2}{2018}$ + $\frac{1}{2019}$

0 bình luận về “Tìm x, biết: ($\frac{1}{2}$ + $\frac{1}{3}$ + …….. + $\frac{1}{2020}$).x = $\frac{2019}{1}$ + $\frac{2018}{2}$ + ……. +$\frac{2}{2018}$ + $\fra”

  1. Đáp án:

    Ta có : 

    2019 +  $\dfrac{2018}{2}$ + …. + $\dfrac{2}{2018}$  + $\dfrac{1}{2019}$  

    = ( 1 + 1 + … + 1) + $\dfrac{2018}{2}$ + …. + $\dfrac{2}{2018}$  + $\dfrac{1}{2019}$ ( 2019 số 1)

    = 1 +  ( 1 + $\dfrac{2018}{2}$)+ …. + ( 1 + $\dfrac{2}{2018}$ )+ ( 1 + $\dfrac{1}{2019}$)

    = 1 + $\dfrac{2020}{2}$ + …. + $\dfrac{2020}{2018}$  + $\dfrac{2020}{2019}$ 

    = $\dfrac{2020}{2020}$ +$\dfrac{2020}{2}$ + …. + $\dfrac{2020}{2018}$  + $\dfrac{2020}{2019}$

    = 2020 . ( $\dfrac{1}{2}$ + …. + $\dfrac{1}{2019}$  + $\dfrac{1}{2020}$)

    => ( $\dfrac{1}{2}$ + …. + $\dfrac{1}{2019}$  + $\dfrac{1}{2020}$).x = 2019 +  $\dfrac{2018}{2}$ + …. + $\dfrac{2}{2018}$  + $\dfrac{1}{2019}$  

    <=> ( $\dfrac{1}{2}$ + …. + $\dfrac{1}{2019}$  + $\dfrac{1}{2020}$) . x = 2020 . ( $\dfrac{1}{2}$ + …. + $\dfrac{1}{2019}$  + $\dfrac{1}{2020}$)

    $<=> x = 2020$

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận