tìm các khoảng đơn điệu của hàm số sau:y=$\sqrt{1-x}$ -$\sqrt{x-2}$

tìm các khoảng đơn điệu của hàm số sau:y=$\sqrt{1-x}$ -$\sqrt{x-2}$

0 bình luận về “tìm các khoảng đơn điệu của hàm số sau:y=$\sqrt{1-x}$ -$\sqrt{x-2}$”

  1. Đáp án:

    Hàm số đã cho nghịch biến \((-\infty;1)\) và \((2;+\infty)\)

    Giải thích các bước giải:

     ĐK: 

    $\begin{cases}1-x \geq 0\\x-2 \geq 0\end{cases}$

    \(\Leftrightarrow \) $\begin{cases}x \leq 1 \\x \geq 2\end{cases}$

    \(D=(-\infty;1] \bigcup [2;+\infty)\)

    \(y’=\dfrac{-1}{2\sqrt{1-x}}-\dfrac{1}{2\sqrt{x-2}}\)

    \(=-(\dfrac{1}{2\sqrt{1-x}}+\dfrac{1}{2\sqrt{x-2}})<0\) \(\forall x \notin \left \{ 1;2 \right \}\)

    Hàm số đã cho nghịch biến \((-\infty;1)\) và \((2;+\infty)\)

    Bình luận

Viết một bình luận