tim cac so nguyen duong thoa man x^2-y^2=105 bn nào lm đug mk cho 5***** lun .mong các bn giúp 17/07/2021 Bởi Brielle tim cac so nguyen duong thoa man x^2-y^2=105 bn nào lm đug mk cho 5***** lun .mong các bn giúp
Đáp án: \[\left( {x;y} \right) = \left\{ {\left( {53;52} \right);\left( {19;16} \right);\left( {13;8} \right);\left( {11;4} \right)} \right\}\] Giải thích các bước giải: Ta có: \(\begin{array}{l}{x^2} – {y^2} = 105\\ \Leftrightarrow \left( {x – y} \right)\left( {x + y} \right) = 105\\x,y \in {Z^ + } \Rightarrow \left\{ \begin{array}{l}\left( {x + y} \right) \in {Z^ + }\\x + y \ge 2\\x + y > x – y\end{array} \right.\\105 = 1.105 = 3.35 = 5.21 = 7.15\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + y = 105\\x – y = 1\end{array} \right.\\\left\{ \begin{array}{l}x + y = 35\\x – y = 3\end{array} \right.\\\left\{ \begin{array}{l}x + y = 21\\x – y = 5\end{array} \right.\\\left\{ \begin{array}{l}x + y = 15\\x – y = 7\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 53\\y = 52\end{array} \right.\\\left\{ \begin{array}{l}x = 19\\y = 16\end{array} \right.\\\left\{ \begin{array}{l}x = 13\\y = 8\end{array} \right.\\\left\{ \begin{array}{l}x = 11\\y = 4\end{array} \right.\end{array} \right.\\ \Rightarrow \left( {x;y} \right) = \left\{ {\left( {53;52} \right);\left( {19;16} \right);\left( {13;8} \right);\left( {11;4} \right)} \right\}\end{array}\) Bình luận
Đáp án:
\[\left( {x;y} \right) = \left\{ {\left( {53;52} \right);\left( {19;16} \right);\left( {13;8} \right);\left( {11;4} \right)} \right\}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
{x^2} – {y^2} = 105\\
\Leftrightarrow \left( {x – y} \right)\left( {x + y} \right) = 105\\
x,y \in {Z^ + } \Rightarrow \left\{ \begin{array}{l}
\left( {x + y} \right) \in {Z^ + }\\
x + y \ge 2\\
x + y > x – y
\end{array} \right.\\
105 = 1.105 = 3.35 = 5.21 = 7.15\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + y = 105\\
x – y = 1
\end{array} \right.\\
\left\{ \begin{array}{l}
x + y = 35\\
x – y = 3
\end{array} \right.\\
\left\{ \begin{array}{l}
x + y = 21\\
x – y = 5
\end{array} \right.\\
\left\{ \begin{array}{l}
x + y = 15\\
x – y = 7
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 53\\
y = 52
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 19\\
y = 16
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 13\\
y = 8
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 11\\
y = 4
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left( {x;y} \right) = \left\{ {\left( {53;52} \right);\left( {19;16} \right);\left( {13;8} \right);\left( {11;4} \right)} \right\}
\end{array}\)