tìm các số nguyên x và y thỏa mãn x^2+2y^2-2xy-2x-3=0 27/09/2021 Bởi Aaliyah tìm các số nguyên x và y thỏa mãn x^2+2y^2-2xy-2x-3=0
Đáp án: $\begin{array}{l}{x^2} + 2{y^2} – 2xy – 2x – 3 = 0\\ \Rightarrow 2{x^2} + 4{y^2} – 4xy – 4x – 6 = 0\\ \Rightarrow \left( {{x^2} – 4xy + 4{y^2}} \right) + \left( {{x^2} – 4x + 4} \right) = 10\\ \Rightarrow {\left( {x – 2y} \right)^2} + {\left( {x – 2} \right)^2} = 10\\Do:x;y \in Z\\10 = 1 + 9\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{\left( {x – 2y} \right)^2} = 1\\{\left( {x – 2} \right)^2} = 9\end{array} \right.\\\left\{ \begin{array}{l}{\left( {x – 2y} \right)^2} = 9\\{\left( {x – 2} \right)^2} = 1\end{array} \right.\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 5;y = 2\\x = 5;y = 3\\x = – 1;y = – 1\\x = – 1;y = 0\\x = 3;y = 0\\x = 3;y = 3\\x = 1;y = – 1\\x = 1;y = 2\end{array} \right.\\Vậy\,\left( {x;y} \right) \in \left\{ \begin{array}{l}\left( {5;2} \right);\left( {5;3} \right);\left( { – 1; – 1} \right);\left( { – 1;0} \right)\\\left( {3;0} \right);\left( {3;3} \right);\left( {1; – 1} \right);\left( {1;2} \right)\end{array} \right\}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
{x^2} + 2{y^2} – 2xy – 2x – 3 = 0\\
\Rightarrow 2{x^2} + 4{y^2} – 4xy – 4x – 6 = 0\\
\Rightarrow \left( {{x^2} – 4xy + 4{y^2}} \right) + \left( {{x^2} – 4x + 4} \right) = 10\\
\Rightarrow {\left( {x – 2y} \right)^2} + {\left( {x – 2} \right)^2} = 10\\
Do:x;y \in Z\\
10 = 1 + 9\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
{\left( {x – 2y} \right)^2} = 1\\
{\left( {x – 2} \right)^2} = 9
\end{array} \right.\\
\left\{ \begin{array}{l}
{\left( {x – 2y} \right)^2} = 9\\
{\left( {x – 2} \right)^2} = 1
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 5;y = 2\\
x = 5;y = 3\\
x = – 1;y = – 1\\
x = – 1;y = 0\\
x = 3;y = 0\\
x = 3;y = 3\\
x = 1;y = – 1\\
x = 1;y = 2
\end{array} \right.\\
Vậy\,\left( {x;y} \right) \in \left\{ \begin{array}{l}
\left( {5;2} \right);\left( {5;3} \right);\left( { – 1; – 1} \right);\left( { – 1;0} \right)\\
\left( {3;0} \right);\left( {3;3} \right);\left( {1; – 1} \right);\left( {1;2} \right)
\end{array} \right\}
\end{array}$