Tìm giá trị lớn nhất của biểu thức: A = I x – 2018I – Ix – 2017I

Tìm giá trị lớn nhất của biểu thức: A = I x – 2018I – Ix – 2017I

0 bình luận về “Tìm giá trị lớn nhất của biểu thức: A = I x – 2018I – Ix – 2017I”

  1. `A=|x-2018|-|x-2017|`

    `⇒|x-2018|-|x-2017|<=|(x-2018)-(2018)|`

    `⇒|1|=1`

    Dấu “=” xảy ra ⇔ $\left\{\begin{matrix} (x-2018)(x-2017) &  & \\  x-2018\leq x-2017 &  &  \end{matrix}\right.$ ⇒ \(\left[ \begin{array}{l}x≥2018\\x≤2017\end{array} \right.\)

    Vậy GTLN của `A` là `1`

    #No_copy

    #Cow_deeptry

    Bình luận

Viết một bình luận