Tìm giá trị nguyên nhỏ nhất của M=x ²-3x+7 với -3 ≤x ≤5 Cho pt x ²-2(m ²+1) x+m=0 .Để pt có hai nghiệm thì 10/07/2021 Bởi Piper Tìm giá trị nguyên nhỏ nhất của M=x ²-3x+7 với -3 ≤x ≤5 Cho pt x ²-2(m ²+1) x+m=0 .Để pt có hai nghiệm thì
$-3\le x\le5$ $M=x^2-3x+7=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=(x-\dfrac{3}{2})^2+\dfrac{19}{4}$ Vì $(x-\dfrac{3}{2})^2\ge0\ \forall x\in R$ nên $M\ge\dfrac{19}{4}$ Suy ra giá trị nguyên nhỏ nhất của $M=\dfrac{20}{4}=5$ khi $(x-\dfrac{3}{2})^2=\dfrac{1}{4}$ $\Leftrightarrow \left[\begin{matrix}x-\dfrac{3}{2}=\dfrac{1}{2}\\x-\dfrac{3}{2}=\dfrac{-1}{2}\end{matrix}\right.$ $\Leftrightarrow \left[\begin{matrix}x=2\\x=1\end{matrix}\right.\ (t/m)$ Vậy với $x=1$ hoặc $x=2$ thì $M$ đạt giá trị nguyên nhỏ nhất bằng $5$ $x^2-2(m^2+1)+m=0$ Để phương trình có 2 nghiệm thì $∆’>0$ $\Leftrightarrow (m^2+1)^2-m>0\\\Leftrightarrow m^4+2m^2+1-m>0\\\Leftrightarrow m^4+m^2+(m-\dfrac{1}{2})^2+\dfrac{3}{4}>0$ (luôn đúng) Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của $m$ Bình luận
Đáp án: M=x^2-2*3/2x+9/4 + 19/4 M=(x-3/2)^2+4.75 M > 4.75 mà M nguyên =>M>=5 vậy M min =5 PT denta”=(m^2+1)^2-m để Pt có ngo <=> denta” >= 0 => m^2+1)^2>=m => m^2+1 >= căn m => m^2-căn m<1 tôi thây đk đến đây là ổn rồi Giải thích các bước giải: Bình luận
$-3\le x\le5$
$M=x^2-3x+7=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=(x-\dfrac{3}{2})^2+\dfrac{19}{4}$
Vì $(x-\dfrac{3}{2})^2\ge0\ \forall x\in R$ nên
$M\ge\dfrac{19}{4}$
Suy ra giá trị nguyên nhỏ nhất của $M=\dfrac{20}{4}=5$ khi $(x-\dfrac{3}{2})^2=\dfrac{1}{4}$
$\Leftrightarrow \left[\begin{matrix}x-\dfrac{3}{2}=\dfrac{1}{2}\\x-\dfrac{3}{2}=\dfrac{-1}{2}\end{matrix}\right.$
$\Leftrightarrow \left[\begin{matrix}x=2\\x=1\end{matrix}\right.\ (t/m)$
Vậy với $x=1$ hoặc $x=2$ thì $M$ đạt giá trị nguyên nhỏ nhất bằng $5$
$x^2-2(m^2+1)+m=0$
Để phương trình có 2 nghiệm thì
$∆’>0$
$\Leftrightarrow (m^2+1)^2-m>0\\\Leftrightarrow m^4+2m^2+1-m>0\\\Leftrightarrow m^4+m^2+(m-\dfrac{1}{2})^2+\dfrac{3}{4}>0$ (luôn đúng)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của $m$
Đáp án:
M=x^2-2*3/2x+9/4 + 19/4
M=(x-3/2)^2+4.75
M > 4.75
mà M nguyên =>M>=5
vậy M min =5
PT
denta”=(m^2+1)^2-m
để Pt có ngo <=> denta” >= 0
=> m^2+1)^2>=m
=> m^2+1 >= căn m
=> m^2-căn m<1
tôi thây đk đến đây là ổn rồi
Giải thích các bước giải: