Tìm x (giải phương trình)
1. (4x + 3) $^{2}$ – (4x – 3) $^{2}$ – 48 = 96
2. 3(x-2) $^{2}$ + 9(x – 1) – 3( $x^{2}$ + x – 2) = 12
Tìm x (giải phương trình)
1. (4x + 3) $^{2}$ – (4x – 3) $^{2}$ – 48 = 96
2. 3(x-2) $^{2}$ + 9(x – 1) – 3( $x^{2}$ + x – 2) = 12
`1,(4x+3)^2-(4x-3)^2-48=96`
`⇔16x^2+24x+9-16x^2+24x-9-48=96`
`⇔48x=144`
`⇔x=3`
`2,3(x-2)^2+9(x-1)-3(x^2+x-2)=12`
`⇔3(x^2-4x+4)+9(x-1)-3(x^2+x-2)=12`
`⇔3x^2-12x+12+9x-9-3x^2-3x+6=12`
`⇔-6x=3`
`⇔x=-1/2`
Đáp án:
Giải thích các bước giải:
$1) (4x + 3)^2 – (4x – 3)^2 – 48 = 96$
$=>(16x^2 + 24x + 9) – (16x^2 – 24x + 9) – 48 = 96$
$=>(16x^2 – 16x^2) + (24x + 24x) + (9 – 9 – 48) = 96$
$=>48x – 48 = 96$
$=>48x = 144$
$=> x = 3$
$Vậy x = 3$
$2) 3(x – 2)^2 + 9(x – 1) – 3(x^2 + x – 2) = 12$
$=>3(x^2 – 4x + 4) + (9x – 9) – (3x^2 + 3x – 6) = 12$
$=>(3x^2 – 12x + 12) + 9x – 9 – 3x^2 – 3x + 6 =12$
$=>(3x^2 – 3x^2) + (-12x + 9x – 3x) + (12 – 9 + 6) = 12$
$=>-6x + 9 = 12$
$=>-6x = 3$
$=>x = \frac{-1}{2}$
$ Vậy x = \frac{-1}{2}$