tìm GTLN của a) M=4x -x ²+3 b) N=2x -x mũ 2 c) P=2x -2x ² -5 23/08/2021 Bởi Bella tìm GTLN của a) M=4x -x ²+3 b) N=2x -x mũ 2 c) P=2x -2x ² -5
Đáp án: c. \(MaxP = – \dfrac{9}{2}\) Giải thích các bước giải: \(\begin{array}{l}a.M = – {x^2} + 4x + 3\\ = – \left( {{x^2} – 4x – 3} \right)\\ = – \left( {{x^2} – 4x + 4 – 7} \right)\\ = – {\left( {x – 2} \right)^2} + 7\\Do:{\left( {x – 2} \right)^2} \ge 0\forall x \in R\\ \to – {\left( {x – 2} \right)^2} \le 0\\ \to – {\left( {x – 2} \right)^2} + 7 \le 7\\ \to MaxM = 7\\ \Leftrightarrow x – 2 = 0\\ \Leftrightarrow x = 2\\b.N = – {x^2} + 2x\\ = – \left( {{x^2} – 2x + 1 – 1} \right)\\ = – {\left( {x – 1} \right)^2} + 1\\Do:{\left( {x – 1} \right)^2} \ge 0\forall x \in R\\ \to – {\left( {x – 1} \right)^2} \le 0\\ \to – {\left( {x – 1} \right)^2} + 1 \le 1\\ \to MaxN = 1\\ \Leftrightarrow x – 1 = 0\\ \Leftrightarrow x = 1\\c.P = – 2{x^2} + 2x – 5\\ = – \left( {2{x^2} – 2x + 5} \right)\\ = – \left[ {{{\left( {x\sqrt 2 } \right)}^2} – 2.x\sqrt 2 .\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2} + \dfrac{9}{2}} \right]\\ = – {\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} – \dfrac{9}{2}\\Do:{\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} \ge 0\forall x\\ \to – {\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} \le 0\\ \to – {\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} – \dfrac{9}{2} \le – \dfrac{9}{2}\\ \to MaxP = – \dfrac{9}{2}\\ \Leftrightarrow x\sqrt 2 – \dfrac{1}{{\sqrt 2 }} = 0\\ \Leftrightarrow x = \dfrac{1}{2}\end{array}\) Bình luận
Đáp án:
c. \(MaxP = – \dfrac{9}{2}\)
Giải thích các bước giải:
\(\begin{array}{l}
a.M = – {x^2} + 4x + 3\\
= – \left( {{x^2} – 4x – 3} \right)\\
= – \left( {{x^2} – 4x + 4 – 7} \right)\\
= – {\left( {x – 2} \right)^2} + 7\\
Do:{\left( {x – 2} \right)^2} \ge 0\forall x \in R\\
\to – {\left( {x – 2} \right)^2} \le 0\\
\to – {\left( {x – 2} \right)^2} + 7 \le 7\\
\to MaxM = 7\\
\Leftrightarrow x – 2 = 0\\
\Leftrightarrow x = 2\\
b.N = – {x^2} + 2x\\
= – \left( {{x^2} – 2x + 1 – 1} \right)\\
= – {\left( {x – 1} \right)^2} + 1\\
Do:{\left( {x – 1} \right)^2} \ge 0\forall x \in R\\
\to – {\left( {x – 1} \right)^2} \le 0\\
\to – {\left( {x – 1} \right)^2} + 1 \le 1\\
\to MaxN = 1\\
\Leftrightarrow x – 1 = 0\\
\Leftrightarrow x = 1\\
c.P = – 2{x^2} + 2x – 5\\
= – \left( {2{x^2} – 2x + 5} \right)\\
= – \left[ {{{\left( {x\sqrt 2 } \right)}^2} – 2.x\sqrt 2 .\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2} + \dfrac{9}{2}} \right]\\
= – {\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} – \dfrac{9}{2}\\
Do:{\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} \ge 0\forall x\\
\to – {\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} \le 0\\
\to – {\left( {x\sqrt 2 – \dfrac{1}{{\sqrt 2 }}} \right)^2} – \dfrac{9}{2} \le – \dfrac{9}{2}\\
\to MaxP = – \dfrac{9}{2}\\
\Leftrightarrow x\sqrt 2 – \dfrac{1}{{\sqrt 2 }} = 0\\
\Leftrightarrow x = \dfrac{1}{2}
\end{array}\)