tìm GTLN GTNN của biểu thức y= $\frac{x^2-2x+2}{x^2+2x+2}$ 21/08/2021 Bởi Emery tìm GTLN GTNN của biểu thức y= $\frac{x^2-2x+2}{x^2+2x+2}$
Đáp án: $\begin{array}{l}y = \dfrac{{{x^2} – 2x + 2}}{{{x^2} + 2x + 2}}\\ \Leftrightarrow y.{x^2} + 2y.x + 2y = {x^2} – 2x + 2\\ \Leftrightarrow \left( {y – 1} \right).{x^2} + \left( {2y + 2} \right).x + 2y – 2 = 0\\ \Leftrightarrow \left( {y – 1} \right).{x^2} + 2.\left( {y + 1} \right).x + 2y – 2 = 0\\ \Leftrightarrow \Delta ‘ \ge 0\\ \Leftrightarrow {\left( {y + 1} \right)^2} – \left( {y – 1} \right).\left( {2y – 2} \right) \ge 0\\ \Leftrightarrow {y^2} + 2y + 1 – 2{\left( {y – 1} \right)^2} \ge 0\\ \Leftrightarrow {y^2} + 2y + 1 – 2{y^2} + 4y – 2 \ge 0\\ \Leftrightarrow {y^2} – 6y + 1 \le 0\\ \Leftrightarrow {\left( {y – 3} \right)^2} – 8 \le 0\\ \Leftrightarrow {\left( {y – 3} \right)^2} \le 8\\ \Leftrightarrow – 2\sqrt 2 \le y – 3 \le 2\sqrt 2 \\ \Leftrightarrow 3 – 2\sqrt 2 \le y \le 3 + 2\sqrt 2 \\ \Leftrightarrow \left\{ \begin{array}{l}GTNN:y = 3 – 2\sqrt 2 \\GTLN:y = 3 + 2\sqrt 2 \end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
y = \dfrac{{{x^2} – 2x + 2}}{{{x^2} + 2x + 2}}\\
\Leftrightarrow y.{x^2} + 2y.x + 2y = {x^2} – 2x + 2\\
\Leftrightarrow \left( {y – 1} \right).{x^2} + \left( {2y + 2} \right).x + 2y – 2 = 0\\
\Leftrightarrow \left( {y – 1} \right).{x^2} + 2.\left( {y + 1} \right).x + 2y – 2 = 0\\
\Leftrightarrow \Delta ‘ \ge 0\\
\Leftrightarrow {\left( {y + 1} \right)^2} – \left( {y – 1} \right).\left( {2y – 2} \right) \ge 0\\
\Leftrightarrow {y^2} + 2y + 1 – 2{\left( {y – 1} \right)^2} \ge 0\\
\Leftrightarrow {y^2} + 2y + 1 – 2{y^2} + 4y – 2 \ge 0\\
\Leftrightarrow {y^2} – 6y + 1 \le 0\\
\Leftrightarrow {\left( {y – 3} \right)^2} – 8 \le 0\\
\Leftrightarrow {\left( {y – 3} \right)^2} \le 8\\
\Leftrightarrow – 2\sqrt 2 \le y – 3 \le 2\sqrt 2 \\
\Leftrightarrow 3 – 2\sqrt 2 \le y \le 3 + 2\sqrt 2 \\
\Leftrightarrow \left\{ \begin{array}{l}
GTNN:y = 3 – 2\sqrt 2 \\
GTLN:y = 3 + 2\sqrt 2
\end{array} \right.
\end{array}$