Tìm GTLN , GTNN của các biểu thức sau F= -2017/ √x+1 G= √x +1/ √x +2 N= X- √X+1 P=X+2 √X-5 Q=-X + 4 √3 +3 16/08/2021 Bởi Anna Tìm GTLN , GTNN của các biểu thức sau F= -2017/ √x+1 G= √x +1/ √x +2 N= X- √X+1 P=X+2 √X-5 Q=-X + 4 √3 +3
Đáp án: Q. \(Max = 4\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ge 0\\F = \dfrac{{ – 2017}}{{\sqrt x + 1}}\\Do:x \ge 0\\ \to \sqrt x \ge 0\\ \to \sqrt x + 1 \ge 1\\ \to \dfrac{{2017}}{{\sqrt x + 1}} \le \dfrac{{2017}}{1}\\ \to \dfrac{{ – 2017}}{{\sqrt x + 1}} \ge – 2017\\ \to Min = – 2017\\ \Leftrightarrow x = 0\\G = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}} = \dfrac{{\sqrt x + 2 – 1}}{{\sqrt x + 2}} = 1 – \dfrac{1}{{\sqrt x + 2}}\\ \to \sqrt x \ge 0\\ \to \sqrt x + 2 \ge 2\\ \to \dfrac{1}{{\sqrt x + 2}} \le \dfrac{1}{2}\\ \to – \dfrac{1}{{\sqrt x + 2}} \ge – \dfrac{1}{2}\\ \to 1 – \dfrac{1}{{\sqrt x + 2}} \ge \dfrac{1}{2}\\ \to Min = \dfrac{1}{2}\\ \Leftrightarrow x = 0\\N = x – \sqrt x + 1 = x – 2\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}\\ = {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\\Do:{\left( {\sqrt x – \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\ \to {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4}\\ \to Min = \dfrac{3}{4}\\ \Leftrightarrow \sqrt x – \dfrac{1}{2} = 0\\ \Leftrightarrow x = \dfrac{1}{4}\\P = x + 2\sqrt x – 5\\ = x + 2\sqrt x + 1 – 6\\ = {\left( {\sqrt x + 1} \right)^2} – 6\\Do:{\left( {\sqrt x + 1} \right)^2} \ge 0\forall x \ge 0\\ \to {\left( {\sqrt x + 1} \right)^2} – 6 \ge – 6\\ \to Min = – 6\\ \Leftrightarrow \sqrt x + 1 = 0\left( {vô lý} \right)\end{array}\) ⇒ Hàm số không có GTLN và GTNN \(\begin{array}{l}Q = – x + 4\sqrt x + 3\\ = – \left( {x – 4\sqrt x – 3} \right)\\ = – \left( {x – 4\sqrt x + 1 – 4} \right)\\ = – {\left( {\sqrt x – 1} \right)^2} + 4\\Do:{\left( {\sqrt x – 1} \right)^2} \ge 0\forall x \ge 0\\ \to – {\left( {\sqrt x – 1} \right)^2} \le 0\\ \to – {\left( {\sqrt x – 1} \right)^2} + 4 \le 4\\ \to Max = 4\\ \Leftrightarrow \sqrt x – 1 = 0\\ \Leftrightarrow x = 1\end{array}\) Bình luận
Đáp án:
Q. \(Max = 4\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ge 0\\
F = \dfrac{{ – 2017}}{{\sqrt x + 1}}\\
Do:x \ge 0\\
\to \sqrt x \ge 0\\
\to \sqrt x + 1 \ge 1\\
\to \dfrac{{2017}}{{\sqrt x + 1}} \le \dfrac{{2017}}{1}\\
\to \dfrac{{ – 2017}}{{\sqrt x + 1}} \ge – 2017\\
\to Min = – 2017\\
\Leftrightarrow x = 0\\
G = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}} = \dfrac{{\sqrt x + 2 – 1}}{{\sqrt x + 2}} = 1 – \dfrac{1}{{\sqrt x + 2}}\\
\to \sqrt x \ge 0\\
\to \sqrt x + 2 \ge 2\\
\to \dfrac{1}{{\sqrt x + 2}} \le \dfrac{1}{2}\\
\to – \dfrac{1}{{\sqrt x + 2}} \ge – \dfrac{1}{2}\\
\to 1 – \dfrac{1}{{\sqrt x + 2}} \ge \dfrac{1}{2}\\
\to Min = \dfrac{1}{2}\\
\Leftrightarrow x = 0\\
N = x – \sqrt x + 1 = x – 2\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}\\
= {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\\
Do:{\left( {\sqrt x – \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\
\to {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4}\\
\to Min = \dfrac{3}{4}\\
\Leftrightarrow \sqrt x – \dfrac{1}{2} = 0\\
\Leftrightarrow x = \dfrac{1}{4}\\
P = x + 2\sqrt x – 5\\
= x + 2\sqrt x + 1 – 6\\
= {\left( {\sqrt x + 1} \right)^2} – 6\\
Do:{\left( {\sqrt x + 1} \right)^2} \ge 0\forall x \ge 0\\
\to {\left( {\sqrt x + 1} \right)^2} – 6 \ge – 6\\
\to Min = – 6\\
\Leftrightarrow \sqrt x + 1 = 0\left( {vô lý} \right)
\end{array}\)
⇒ Hàm số không có GTLN và GTNN
\(\begin{array}{l}
Q = – x + 4\sqrt x + 3\\
= – \left( {x – 4\sqrt x – 3} \right)\\
= – \left( {x – 4\sqrt x + 1 – 4} \right)\\
= – {\left( {\sqrt x – 1} \right)^2} + 4\\
Do:{\left( {\sqrt x – 1} \right)^2} \ge 0\forall x \ge 0\\
\to – {\left( {\sqrt x – 1} \right)^2} \le 0\\
\to – {\left( {\sqrt x – 1} \right)^2} + 4 \le 4\\
\to Max = 4\\
\Leftrightarrow \sqrt x – 1 = 0\\
\Leftrightarrow x = 1
\end{array}\)