Tìm GTLN hoặc GTNN của các biểu thức sau
a, A= x^2+8x
b, B=-2x^2+8x-15
c,C=x^2-6x+y^2-2y+12
d, D=(x^2-4x-5)(x^2-4x-19)+49
e, E= x-x^2
Tìm GTLN hoặc GTNN của các biểu thức sau
a, A= x^2+8x
b, B=-2x^2+8x-15
c,C=x^2-6x+y^2-2y+12
d, D=(x^2-4x-5)(x^2-4x-19)+49
e, E= x-x^2
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
A = {x^2} + 8x = \left( {{x^2} + 8x + 16} \right) – 16\\
= \left( {{x^2} + 2.x.4 + {4^2}} \right) – 16 = {\left( {x + 4} \right)^2} – 16\\
{\left( {x + 4} \right)^2} \ge 0,\,\,\,\forall x \Rightarrow {\left( {x + 4} \right)^2} – 16 \ge – 16,\,\,\,\forall x\\
\Rightarrow {A_{\min }} = – 16 \Leftrightarrow {\left( {x + 4} \right)^2} = 0 \Leftrightarrow x = – 4\\
b,\\
B = – 2{x^2} + 8x – 15 = – \left( {2{x^2} – 8x + 8} \right) – 7\\
= – 7 – 2.\left( {{x^2} – 4x + 4} \right) = – 7 – 2.{\left( {x – 2} \right)^2}\\
{\left( {x – 2} \right)^2} \ge 0,\,\,\forall x \Rightarrow – 7 – 2{\left( {x – 2} \right)^2} \le – 7,\,\,\,\forall x\\
\Rightarrow {B_{\max }} = – 7 \Leftrightarrow {\left( {x – 2} \right)^2} = 0 \Leftrightarrow x = 2\\
c,\\
C = {x^2} – 6x + {y^2} – 2y + 12\\
= \left( {{x^2} – 6x + 9} \right) + \left( {{y^2} – 2y + 1} \right) + 2\\
= {\left( {x – 3} \right)^2} + {\left( {y – 1} \right)^2} + 2\\
{\left( {x – 3} \right)^2} \ge 0,\,\,\,\forall x\\
{\left( {y – 1} \right)^2} \ge 0,\,\,\forall y\\
\Rightarrow {\left( {x – 3} \right)^2} + {\left( {y – 1} \right)^2} + 2 \ge 2,\,\,\forall x,y\\
\Rightarrow {C_{\min }} = 2 \Leftrightarrow \left\{ \begin{array}{l}
{\left( {x – 3} \right)^2} = 0\\
{\left( {y – 1} \right)^2} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 3\\
y = 1
\end{array} \right.\\
d,\\
D = \left( {{x^2} – 4x – 5} \right)\left( {{x^2} – 4x – 19} \right) + 49\\
= \left[ {\left( {{x^2} – 4x – 12} \right) + 7} \right].\left[ {\left( {{x^2} – 4x – 12} \right) – 7} \right] + 49\\
= {\left( {{x^2} – 4x – 12} \right)^2} – {7^2} + 49\\
= {\left( {{x^2} – 4x – 12} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow {D_{\min }} = 0 \Leftrightarrow {\left( {{x^2} – 4x – 12} \right)^2} = 0 \Leftrightarrow {x^2} – 4x – 12 = 0 \Leftrightarrow \left( {x – 6} \right)\left( {x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 6\\
x = – 2
\end{array} \right.\\
e,\\
E = x – {x^2} = – \left( {{x^2} – x + \dfrac{1}{4}} \right) + \dfrac{1}{4}\\
= \dfrac{1}{4} – \left( {{x^2} – 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right)\\
= \dfrac{1}{4} – {\left( {x – \dfrac{1}{2}} \right)^2} \le \dfrac{1}{4},\,\,\,\forall x\\
\Rightarrow {E_{\max }} = \dfrac{1}{4} \Leftrightarrow {\left( {x – \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x = \dfrac{1}{2}
\end{array}\)