tìm GTNN A=x^2+5y+4xy+2x+12 B=x(x+2)(x+4)(x+6)+8 C=(x+1)(2x-1) 05/11/2021 Bởi Vivian tìm GTNN A=x^2+5y+4xy+2x+12 B=x(x+2)(x+4)(x+6)+8 C=(x+1)(2x-1)
Đáp án: `↓↓` Giải thích các bước giải: `A =x^2+5y^2+4xy+2x+12` `=x^2+2.x.(2y + 1) + (2y+1)^2 -(2y+1)^2+5y^2+12` `=(x+2y+1)^2-4y^2-4y-1+5y^2+12` `=(x+2y+1)^2+(y^2-4y+4) +7 ` `=(x+2y+1)^2+(y-2)^2 + 7 >= 7` Dấu “=” xảy ra `⇔x=-5, y=2` Vậy `A_(min)=7 <=> x=-5; y=2` `—` `B=x(x+2)(x+4)(x+6)+8` `=[x(x+6)].[(x+2)(x+4)]+8` `=(x^2+6x)(x^2+6x+8)+8` Đặt `x^2+6x+4=a` `=(a-4)(a+4)+8` `=a^2-16+8=a^2-8>=-8` Dấu “=” xảy ra `<=> a=0` `<=> x^2+6x+4=0` `<=> x^2+6x+9-5=0` `<=> (x+3)^2-(\sqrt{5})^2=0` `<=> (x+3-\sqrt{5})(x+3+\sqrt{5})=0` `=>` \(\left[ \begin{array}{l}x=-3-\sqrt{5}\\x=\sqrt{5}-3\end{array} \right.\) Vậy `B_(min)=-8 <=> x=-3-\sqrt{5}` hoặc `x=\sqrt{5}-3` `—-` `C=(x+1)(2x-1)` `=2x^2-x+2x-1=2x^2+x-1=2(x^2+1/2x-1/2)` `=2(x^2+2. x. 1/4+1/16-1/16-1/2)` `=2(x+1/4)^2-9/8>=-9/8` Dấu “=” xảy ra `<=> x=-1/4` Vậy `C_(min)=-9/8 <=> x=-1/4` Bình luận
`A=x^2+5y²+4xy+2x+12` (Sai chỗ `5y` thành `5y²`) `=x²+2.x.(2y+1)+(2y+1)²-(2y+1)²+5y²+12` `=(x+2y+1)²-4y²-4y-1+5y²+12` `=(x + 2y + 1)^2 + (y²-4y+4) + 7` `=(x + 2y + 1)^2 + (y – 2)^2 + 7 ≥7` Dấu bằng khi :`y=2,x=-5` `B=x(x+2)(x+4)(x+6)+8` `=(x²+6x).(x²+6x+8)+8` Đặt `x²+6x=a` Ta có `B=a.(a+8)+8` `=a²+8a+8` `=a²+2.a.4+16-8` `=(a+4)²-8≥-8` `⇒B≥-8` Dấu bằng khi :` a=-4⇔x²+6x=-4⇔x²+6x+4=0⇔x²+2.x.3+9=5⇔(x+3)²=5⇒x=-3+√5` Hoặc `x=-3-√5` `C=(x+1)(2x-1)` `=2x²-x+2x-1` `=2x²+x-1` `=2.(x²+1/2.x-1/2)` `=2.(x²+2.x.1/4+1/16-9/16)` `=2.(x+1/4)²-9/8≥-9/8` Dấu bằng khi: `x=-1/4` Học tốt Bình luận
Đáp án:
`↓↓`
Giải thích các bước giải:
`A =x^2+5y^2+4xy+2x+12`
`=x^2+2.x.(2y + 1) + (2y+1)^2 -(2y+1)^2+5y^2+12`
`=(x+2y+1)^2-4y^2-4y-1+5y^2+12`
`=(x+2y+1)^2+(y^2-4y+4) +7 `
`=(x+2y+1)^2+(y-2)^2 + 7 >= 7`
Dấu “=” xảy ra `⇔x=-5, y=2`
Vậy `A_(min)=7 <=> x=-5; y=2`
`—`
`B=x(x+2)(x+4)(x+6)+8`
`=[x(x+6)].[(x+2)(x+4)]+8`
`=(x^2+6x)(x^2+6x+8)+8`
Đặt `x^2+6x+4=a`
`=(a-4)(a+4)+8`
`=a^2-16+8=a^2-8>=-8`
Dấu “=” xảy ra `<=> a=0`
`<=> x^2+6x+4=0`
`<=> x^2+6x+9-5=0`
`<=> (x+3)^2-(\sqrt{5})^2=0`
`<=> (x+3-\sqrt{5})(x+3+\sqrt{5})=0`
`=>` \(\left[ \begin{array}{l}x=-3-\sqrt{5}\\x=\sqrt{5}-3\end{array} \right.\)
Vậy `B_(min)=-8 <=> x=-3-\sqrt{5}` hoặc `x=\sqrt{5}-3`
`—-`
`C=(x+1)(2x-1)`
`=2x^2-x+2x-1=2x^2+x-1=2(x^2+1/2x-1/2)`
`=2(x^2+2. x. 1/4+1/16-1/16-1/2)`
`=2(x+1/4)^2-9/8>=-9/8`
Dấu “=” xảy ra `<=> x=-1/4`
Vậy `C_(min)=-9/8 <=> x=-1/4`
`A=x^2+5y²+4xy+2x+12` (Sai chỗ `5y` thành `5y²`)
`=x²+2.x.(2y+1)+(2y+1)²-(2y+1)²+5y²+12`
`=(x+2y+1)²-4y²-4y-1+5y²+12`
`=(x + 2y + 1)^2 + (y²-4y+4) + 7`
`=(x + 2y + 1)^2 + (y – 2)^2 + 7 ≥7`
Dấu bằng khi :`y=2,x=-5`
`B=x(x+2)(x+4)(x+6)+8`
`=(x²+6x).(x²+6x+8)+8`
Đặt `x²+6x=a`
Ta có `B=a.(a+8)+8`
`=a²+8a+8`
`=a²+2.a.4+16-8`
`=(a+4)²-8≥-8`
`⇒B≥-8`
Dấu bằng khi :` a=-4⇔x²+6x=-4⇔x²+6x+4=0⇔x²+2.x.3+9=5⇔(x+3)²=5⇒x=-3+√5` Hoặc `x=-3-√5`
`C=(x+1)(2x-1)`
`=2x²-x+2x-1`
`=2x²+x-1`
`=2.(x²+1/2.x-1/2)`
`=2.(x²+2.x.1/4+1/16-9/16)`
`=2.(x+1/4)²-9/8≥-9/8`
Dấu bằng khi: `x=-1/4`
Học tốt