tìm gtnn a, A=4x^2-10x b, B=x^2+5y^2+4xy+6x-2y+2021 trả lời mình vote hết nhaa 28/07/2021 Bởi Parker tìm gtnn a, A=4x^2-10x b, B=x^2+5y^2+4xy+6x-2y+2021 trả lời mình vote hết nhaa
Đáp án: $\begin{array}{l}a)A = 4{x^2} – 10x\\ = {\left( {2x} \right)^2} – 2.2x.\dfrac{5}{2} + \dfrac{{25}}{4} – \dfrac{{25}}{4}\\ = {\left( {2x – \dfrac{5}{2}} \right)^2} – \dfrac{{25}}{4}\\Do:{\left( {2x – \dfrac{5}{2}} \right)^2} \ge 0\\ \Leftrightarrow {\left( {2x – \dfrac{5}{2}} \right)^2} – \dfrac{{25}}{4} \ge \dfrac{{ – 25}}{4}\\ \Leftrightarrow A \ge \dfrac{{ – 25}}{4}\\ \Leftrightarrow GTNN:A = – \dfrac{{25}}{4}\\Khi:x = \dfrac{5}{4}\\Vậy\,x = \dfrac{5}{4}\\b)B = {x^2} + 5{y^2} + 4xy + 6x – 2y + 2021\\ = {x^2} + 4{y^2} + 9 + 2.x.2y + 2.x.3 + 2.2y.3\\ + {y^2} – 14y + 49 + 1963\\ = {\left( {x + 2y + 3} \right)^2} + {\left( {y – 7} \right)^2} + 1963\\\left( {do:{{\left( {a + b + c} \right)}^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)\\\left\{ \begin{array}{l}{\left( {x + 2y + 3} \right)^2} \ge 0\\{\left( {y – 7} \right)^2} \ge 0\end{array} \right.\\ \Leftrightarrow {\left( {x + 2y + 3} \right)^2} + {\left( {y – 7} \right)^2} + 1963 \ge 1963\\ \Leftrightarrow B \ge 1963\\ \Leftrightarrow GTNN:B = 1963\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 3 = 0\\y = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = – 17\\y = 7\end{array} \right.\\Vậy\,x = – 17;y = 7,GTNN:B = 1963\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)A = 4{x^2} – 10x\\
= {\left( {2x} \right)^2} – 2.2x.\dfrac{5}{2} + \dfrac{{25}}{4} – \dfrac{{25}}{4}\\
= {\left( {2x – \dfrac{5}{2}} \right)^2} – \dfrac{{25}}{4}\\
Do:{\left( {2x – \dfrac{5}{2}} \right)^2} \ge 0\\
\Leftrightarrow {\left( {2x – \dfrac{5}{2}} \right)^2} – \dfrac{{25}}{4} \ge \dfrac{{ – 25}}{4}\\
\Leftrightarrow A \ge \dfrac{{ – 25}}{4}\\
\Leftrightarrow GTNN:A = – \dfrac{{25}}{4}\\
Khi:x = \dfrac{5}{4}\\
Vậy\,x = \dfrac{5}{4}\\
b)B = {x^2} + 5{y^2} + 4xy + 6x – 2y + 2021\\
= {x^2} + 4{y^2} + 9 + 2.x.2y + 2.x.3 + 2.2y.3\\
+ {y^2} – 14y + 49 + 1963\\
= {\left( {x + 2y + 3} \right)^2} + {\left( {y – 7} \right)^2} + 1963\\
\left( {do:{{\left( {a + b + c} \right)}^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)\\
\left\{ \begin{array}{l}
{\left( {x + 2y + 3} \right)^2} \ge 0\\
{\left( {y – 7} \right)^2} \ge 0
\end{array} \right.\\
\Leftrightarrow {\left( {x + 2y + 3} \right)^2} + {\left( {y – 7} \right)^2} + 1963 \ge 1963\\
\Leftrightarrow B \ge 1963\\
\Leftrightarrow GTNN:B = 1963\\
\Leftrightarrow \left\{ \begin{array}{l}
x + 2y + 3 = 0\\
y = 7
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = – 17\\
y = 7
\end{array} \right.\\
Vậy\,x = – 17;y = 7,GTNN:B = 1963
\end{array}$