Tìm GTNN của: A=5x^2-4xy+5y^2-4/3y-x+101/180

Tìm GTNN của:
A=5x^2-4xy+5y^2-4/3y-x+101/180

0 bình luận về “Tìm GTNN của: A=5x^2-4xy+5y^2-4/3y-x+101/180”

  1. Đáp án:

    $MinA = \dfrac{{289}}{{756}} \Leftrightarrow \left( {x;y} \right) = \left( {\dfrac{{23}}{{126}};\dfrac{{13}}{{63}}} \right)$

    Giải thích các bước giải:

     Ta có:

    $\begin{array}{l}
    A = 5{x^2} – 4xy + 5{y^2} – \dfrac{4}{3}y – x + \dfrac{{101}}{{180}}\\
    5A = 25{x^2} – 20xy + 25{y^2} – \dfrac{{20}}{3}y – 5x + \dfrac{{101}}{{36}}\\
     = {\left( {5x} \right)^2} – 2.5x\left( {2y + \dfrac{1}{2}} \right) + {\left( {2y + \dfrac{1}{2}} \right)^2} + 21{y^2} – \dfrac{{26}}{3}y + \dfrac{{101}}{{36}}\\
     = {\left( {5x – 2y – \dfrac{1}{2}} \right)^2} + 21\left( {{y^2} – 2.y.\dfrac{{13}}{{63}} + \dfrac{{{{13}^2}}}{{{{63}^2}}}} \right) + \dfrac{{1445}}{{756}}\\
     = {\left( {5x – 2y – \dfrac{1}{2}} \right)^2} + 21{\left( {y – \dfrac{{13}}{{63}}} \right)^2} + \dfrac{{1445}}{{756}}
    \end{array}$

    Lại có:

    $\begin{array}{l}
    {\left( {5x – 2y – \dfrac{1}{2}} \right)^2} \ge 0;{\left( {y – \dfrac{{13}}{{63}}} \right)^2} \ge 0,\forall x,y\\
     \Rightarrow 5A \ge \dfrac{{1445}}{{756}}\\
     \Rightarrow A \ge \dfrac{{289}}{{756}}\\
     \Rightarrow MinA = \dfrac{{289}}{{756}}
    \end{array}$

    Dấu bằng xảy ra:

    $\begin{array}{l}
     \Leftrightarrow \left\{ \begin{array}{l}
    5x – 2y – \dfrac{1}{2} = 0\\
    y – \dfrac{{13}}{{63}} = 0
    \end{array} \right.\\
     \Leftrightarrow \left\{ \begin{array}{l}
    x = \dfrac{{23}}{{126}}\\
    y = \dfrac{{13}}{{63}}
    \end{array} \right.
    \end{array}$

    Vậy $MinA = \dfrac{{289}}{{756}} \Leftrightarrow \left( {x;y} \right) = \left( {\dfrac{{23}}{{126}};\dfrac{{13}}{{63}}} \right)$

    Bình luận

Viết một bình luận