tìm GTNN của biểu thức : A= x-3$\sqrt[2]{x}$ +2 B= (2 căn x +4 )/( (căn x) +3 31/07/2021 Bởi Emery tìm GTNN của biểu thức : A= x-3$\sqrt[2]{x}$ +2 B= (2 căn x +4 )/( (căn x) +3
$A = x – 3\sqrt x + 2$ $= x – 2.\dfrac{3}{2}.\sqrt x + \dfrac{9}{4} – \dfrac{1}{4}$ $= \left(\sqrt x – \dfrac{3}{2}\right)^2 – \dfrac{1}{4}$ Ta có: $\left(\sqrt x – \dfrac{3}{2}\right)^2 \geq 0, \forall x$ $\Leftrightarrow \left(\sqrt x – \dfrac{3}{2}\right)^2 – \dfrac{1}{4} \geq – \dfrac{1}{4}$ Hay $A \geq – \dfrac{1}{4}$ Dấu = xảy ra $\Leftrightarrow \sqrt x = \dfrac{3}{2} \Leftrightarrow x = \dfrac{9}{4}$ Vậy $\min A = -\dfrac{1}{4} \Leftrightarrow x = \dfrac{9}{4}$ $B = \dfrac{2\sqrt x + 4}{\sqrt x + 3}$ $= \dfrac{2(\sqrt x + 3) – 2}{\sqrt x + 3}$ $= 2 – \dfrac{2}{\sqrt x + 3}$ Ta có: $\sqrt x \geq 0$ $\Leftrightarrow \sqrt x + 3 \geq 3$ $\Leftrightarrow \dfrac{2}{\sqrt x + 3} \leq \dfrac{2}{3}$ $\Leftrightarrow – \dfrac{2}{\sqrt x + 3} \geq -\dfrac{2}{3}$ $\Leftrightarrow 2 – \dfrac{2}{\sqrt x + 3} \geq 2 – \dfrac{2}{3} = \dfrac{4}{3}$ Dấu = xảy ra $\Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0$ Vậy $\min B = \dfrac{4}{3} \Leftrightarrow x = 0$ Bình luận
$A = x – 3\sqrt x + 2$
$= x – 2.\dfrac{3}{2}.\sqrt x + \dfrac{9}{4} – \dfrac{1}{4}$
$= \left(\sqrt x – \dfrac{3}{2}\right)^2 – \dfrac{1}{4}$
Ta có: $\left(\sqrt x – \dfrac{3}{2}\right)^2 \geq 0, \forall x$
$\Leftrightarrow \left(\sqrt x – \dfrac{3}{2}\right)^2 – \dfrac{1}{4} \geq – \dfrac{1}{4}$
Hay $A \geq – \dfrac{1}{4}$
Dấu = xảy ra $\Leftrightarrow \sqrt x = \dfrac{3}{2} \Leftrightarrow x = \dfrac{9}{4}$
Vậy $\min A = -\dfrac{1}{4} \Leftrightarrow x = \dfrac{9}{4}$
$B = \dfrac{2\sqrt x + 4}{\sqrt x + 3}$
$= \dfrac{2(\sqrt x + 3) – 2}{\sqrt x + 3}$
$= 2 – \dfrac{2}{\sqrt x + 3}$
Ta có:
$\sqrt x \geq 0$
$\Leftrightarrow \sqrt x + 3 \geq 3$
$\Leftrightarrow \dfrac{2}{\sqrt x + 3} \leq \dfrac{2}{3}$
$\Leftrightarrow – \dfrac{2}{\sqrt x + 3} \geq -\dfrac{2}{3}$
$\Leftrightarrow 2 – \dfrac{2}{\sqrt x + 3} \geq 2 – \dfrac{2}{3} = \dfrac{4}{3}$
Dấu = xảy ra $\Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0$
Vậy $\min B = \dfrac{4}{3} \Leftrightarrow x = 0$