tìm GTNN của biểu thức A= $\frac{x^2-4x+1}{x^2}$ B= $\frac{4x^2-6x+1}{(2x-1)^2}$ C=

tìm GTNN của biểu thức
A= $\frac{x^2-4x+1}{x^2}$
B= $\frac{4x^2-6x+1}{(2x-1)^2}$
C=

0 bình luận về “tìm GTNN của biểu thức A= $\frac{x^2-4x+1}{x^2}$ B= $\frac{4x^2-6x+1}{(2x-1)^2}$ C=”

  1. Đáp án:

    a, Ta có

    `A = (x^2 – 4x + 1)/x^2 = 1 – 4/x + 1/x^2`

    `= 1/x^2 – 2 . 1/x . 2 + 4 – 3`

    `= (1/x – 2)^2 – 3 ≥ -3`

    Dấu “=” xảy ra `<=> 1/x – 2 = 0 <=> x = 1/2`

    Vậy $Min_{A}$ là `-3 <=> x = 1/2`

    b, ko tìm đc Min chỉ tìm đc `Max` tham khảo

    Ta có

    ` 5/4 – B = 5/4 – (4x^2 – 6x + 1)/(2x – 1)^2 = [5(2x – 1)^2 – 4(4x^2 –  6x + 1)]/(2x – 1)^2`

    `= (4x^2 + 4x + 1)/(2x – 1)^2`

    `= (2x + 1)^2/(2x – 1)^2 ≥ 0`

    `-> 5/4 – B ≥ 0 -> B ≤ 5/4`

    Dấu “=” xảy ra `<=> 2x + 1 = 0 <=> x = -1/2`

    Vậy `Max_{B} = 5/4 <=> x = -1/2`

    Giải thích các bước giải:

     

    Bình luận

Viết một bình luận