Tìm lim (8n^5 – 2n^3 + 1) / (2n^2 – 4n^5 + 2019) 05/11/2021 Bởi Ivy Tìm lim (8n^5 – 2n^3 + 1) / (2n^2 – 4n^5 + 2019)
`lim (8n^5 – 2n^3 + 1) / (2n^2 – 4n^5 + 2019)` `=lim(8-2/n^2+1/n^5)/(2/n^3-4+2019/n^5)` `=(8-0+0)/(0-4+0)` `=-8/4=-2` Bình luận
Đáp án: lim (8n^5 – 2n^3 + 1) / (2n^2 – 4n^5 + 2019)=lim n^5(8-2/n^2+1/n^5)/n^5(2/n^3-4+2019/n^5)=lim(8-2/n^2+1/n^5)/(2/n^3-4+1/2019)=(8-0+0)/(0-4+0)=8/-4=-2 Giải thích các bước giải: Bình luận
`lim (8n^5 – 2n^3 + 1) / (2n^2 – 4n^5 + 2019)`
`=lim(8-2/n^2+1/n^5)/(2/n^3-4+2019/n^5)`
`=(8-0+0)/(0-4+0)`
`=-8/4=-2`
Đáp án: lim (8n^5 – 2n^3 + 1) / (2n^2 – 4n^5 + 2019)=lim n^5(8-2/n^2+1/n^5)/n^5(2/n^3-4+2019/n^5)=lim(8-2/n^2+1/n^5)/(2/n^3-4+1/2019)=(8-0+0)/(0-4+0)=8/-4=-2
Giải thích các bước giải: