Tìm lim (8n^5 – 2n^3 + 1) / (4n^5 + 2n^2 + 1) 05/11/2021 Bởi Allison Tìm lim (8n^5 – 2n^3 + 1) / (4n^5 + 2n^2 + 1)
`lim (8n^5 – 2n^3 + 1) / (4n^5 + 2n^2 + 1)` `=lim(n^5(8-2/n^2+1/n^5))/(n^5(4+2/n^3+1/n^5)` `=lim(8-2/n^2-1/n^5)/(4+2/n^3+1/n^5)` `=8/4` `=2` Bình luận
Đáp án:lim(8n^5 – 2n^3 + 1) / (4n^5 + 2n^2 + 1)=n^5(8-2n^2+1/n^5)/n^5(4+2/n^3+1/n^5)=lim(8-2n^2+1/n^5)/(4+2/n^3+1/n^5)=(8-0+0)/(4+0+0)=8/4=2 Giải thích các bước giải: Bình luận
`lim (8n^5 – 2n^3 + 1) / (4n^5 + 2n^2 + 1)`
`=lim(n^5(8-2/n^2+1/n^5))/(n^5(4+2/n^3+1/n^5)`
`=lim(8-2/n^2-1/n^5)/(4+2/n^3+1/n^5)`
`=8/4`
`=2`
Đáp án:lim(8n^5 – 2n^3 + 1) / (4n^5 + 2n^2 + 1)=n^5(8-2n^2+1/n^5)/n^5(4+2/n^3+1/n^5)=lim(8-2n^2+1/n^5)/(4+2/n^3+1/n^5)=(8-0+0)/(4+0+0)=8/4=2
Giải thích các bước giải: