tìm lim
a, lim [{căn(4x^2 – x)} – 2x]
x–>+vô cực
b, lim (7x + x^2) / (x + 2)
x–>-2-
c, lim (x^4 + x^2) / (1- x^3)
x–>1+
tìm lim
a, lim [{căn(4x^2 – x)} – 2x]
x–>+vô cực
b, lim (7x + x^2) / (x + 2)
x–>-2-
c, lim (x^4 + x^2) / (1- x^3)
x–>1+
a) $\lim_{x \to +\infty} \dfrac{4x^2-x-4x^2}{ \sqrt[]{4x^2-x}+2x } $
=$\lim_{x \to+ \infty} \dfrac{-x} {\sqrt[]{4x^2-x}+2x} $
= $\lim_{x \to+ \infty} \dfrac{-1}{ \sqrt[]{4- \dfrac{1}{x} }+2 } $
=$\dfrac{-1}{2+2}= \dfrac{-1}{4}$
b) $\lim_{x \to -2^-} \dfrac{7x+x^2}{x+2} $
ta có $x<-2 <=>x+2<0$
mà $\lim_{x \to-2^-} 7x+x^2 =7.-2+(-2)^2=-10<0$
=> $\lim_{x \to -2^-} \dfrac{7x+x^2}{x+2} =+∝$
c) $\lim_{x\to 1^+} \dfrac{x^4+x^2}{1-x^3} $
ta có $x>1 <=>x^3>1<=>-x^3<-1<=>1-x^3<0
mà $\lim_{x \to1^+} x^4+x^2=1+1=2>0$
=> $\lim_{x \to 1^+} \dfrac{x^4+x^2}{1-x^3}=-∝ $
hay thì xin hay nhất