tìm m để bất phương trình : mx^2-2(m-1)x +3m+2 <0 với mọi x ∈ (-∞,0) 14/08/2021 Bởi Amaya tìm m để bất phương trình : mx^2-2(m-1)x +3m+2 <0 với mọi x ∈ (-∞,0)
Đáp án: \[m \le – \frac{2}{3}\] Giải thích các bước giải: Ta có: \(\begin{array}{l}m{x^2} – 2\left( {m – 1} \right)x + 3m + 2 < 0,\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\ \Leftrightarrow m{x^2} – 2mx + 2x + 3m + 2 < 0,\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\ \Leftrightarrow m\left( {{x^2} – 2x + 3} \right) + \left( {2x + 2} \right) < 0,\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\ \Leftrightarrow m\left( {{x^2} – 2x + 3} \right) < – \left( {2x + 2} \right),\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\ \Leftrightarrow m < \frac{{ – \left( {2x + 2} \right)}}{{{x^2} – 2x + 3}},\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{x^2} – 2x + 3 = {{\left( {x – 1} \right)}^2} + 2 > 0} \right)\\ \Leftrightarrow m \le \mathop {\min }\limits_{\left( { – \infty ;0} \right)} f\left( x \right) = \frac{{ – \left( {2x + 2} \right)}}{{{x^2} – 2x + 3}} = f\left( 0 \right) = – \frac{2}{3}\\ \Rightarrow m \le – \frac{2}{3}\end{array}\) Bình luận
Đáp án:
\[m \le – \frac{2}{3}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
m{x^2} – 2\left( {m – 1} \right)x + 3m + 2 < 0,\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\
\Leftrightarrow m{x^2} – 2mx + 2x + 3m + 2 < 0,\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\
\Leftrightarrow m\left( {{x^2} – 2x + 3} \right) + \left( {2x + 2} \right) < 0,\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\
\Leftrightarrow m\left( {{x^2} – 2x + 3} \right) < – \left( {2x + 2} \right),\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\\
\Leftrightarrow m < \frac{{ – \left( {2x + 2} \right)}}{{{x^2} – 2x + 3}},\,\,\,\,\,\,\forall x \in \left( { – \infty ;0} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{x^2} – 2x + 3 = {{\left( {x – 1} \right)}^2} + 2 > 0} \right)\\
\Leftrightarrow m \le \mathop {\min }\limits_{\left( { – \infty ;0} \right)} f\left( x \right) = \frac{{ – \left( {2x + 2} \right)}}{{{x^2} – 2x + 3}} = f\left( 0 \right) = – \frac{2}{3}\\
\Rightarrow m \le – \frac{2}{3}
\end{array}\)