Tìm m để hàm số y=1/3x^3-(m+1)x^2+(m^2+2)x+m-2 đạt cực trị tại x1,x2 thỏa x1^2+x2^2=10

Tìm m để hàm số y=1/3x^3-(m+1)x^2+(m^2+2)x+m-2 đạt cực trị tại x1,x2 thỏa x1^2+x2^2=10

0 bình luận về “Tìm m để hàm số y=1/3x^3-(m+1)x^2+(m^2+2)x+m-2 đạt cực trị tại x1,x2 thỏa x1^2+x2^2=10”

  1. Đáp án: $m=1$

    Giải thích các bước giải:

    Ta có:

    $y’=x^2-2(m+1)x+m^2+2$

    $\to x^2-2(m+1)x+m^2+2=0$ có $2$ nghiệm là cực trị hàm số 

    Để hàm số có $2$ cực trị

    $\to\Delta’=(m+1)^2-1\cdot (m^2+2)>0$

    $\to 2m-1>0$

    $\to m>\dfrac12$

    $\to$Phương trình có $2$ nghiệm $x_1,x_2$ thỏa mãn

    $\begin{cases}x_1+x_2=2(m+1)\\x_1x_2=m^2+2\end{cases}$

    Để $x_1^2+x_2^2=10$

    $\to (x_1+x_2)^2-2x_1x_2=10$

    $\to (2\cdot (m+1))^2-2\cdot (m^2+2)=10$

    $\to 2m^2+8m=10$

    $\to m^2+4m=5$

    $\to m^2+4m+4=9$

    $\to (m+2)^2=9$

    $\to m+2=3$ vì $m>\dfrac12$

    $\to m=1$

    Bình luận

Viết một bình luận