tim m để hàm số y=x^3 – 3(m+1)x^2 +3m(m+2)x +1 đồng biến trên (-vô cùng ;-1) và (2;+ vô cùng) … help me 04/10/2021 Bởi Brielle tim m để hàm số y=x^3 – 3(m+1)x^2 +3m(m+2)x +1 đồng biến trên (-vô cùng ;-1) và (2;+ vô cùng) … help me
\[\begin{array}{l} y = {x^3} – 3\left( {m + 1} \right){x^2} + 3m\left( {m + 2} \right)x + 1\\ \Rightarrow y’ = 3{x^2} – 6\left( {m + 1} \right)x + 3m\left( {m + 2} \right).\\ \Rightarrow y’ = 0\\ \Leftrightarrow 3{x^2} – 6\left( {m + 1} \right)x + 3m\left( {m + 2} \right) = 0\,\\ \Leftrightarrow {x^2} – 2\left( {m + 1} \right)x + {m^2} + 2m = 0\,\,\,\,\,\left( * \right)\\ TH1:\,\,\,hs\,\,\,DB\,\,tren\,\,\,R\\ \Leftrightarrow y’ \geq 0\,\,\,\forall x \in R\\ \Leftrightarrow \Delta ‘ \leq 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} – {m^2} – 2m \leq 0\\ \Leftrightarrow {m^2} + 2m + 1 – {m^2} – 2m \leq 0\\ \Leftrightarrow 1 \leq 0\,\,\,\left( {vo\,\,ly} \right)\\ \Rightarrow hs\,\,\,k\,\,\,DB\,\,\,tren\,\,\,R.\\ TH2:\,\,pt\,\,y’ = 0\,\,co\,\,2\,\,nghiem\,\,pb\\ \Leftrightarrow \Delta ‘ > 0 \Leftrightarrow {\left( {m + 1} \right)^2} – {m^2} – 2m > 0 \Leftrightarrow 1 > 0\,\,\,\forall m.\\ \Rightarrow pt\,\,\,\left( * \right)\,\,\,co\,\,\,2\,\,nghiem\,\,\,pb\,\,\,{x_1},\,\,{x_2}\,\,\,voi\,\,moi\,\,m.\\ \Rightarrow \left[ \begin{array}{l} {x_1} = m + 1 + 1 = m + 2\\ {x_2} = m + 1 – 1 = m \end{array} \right..\\ Ta\,\,co\,\,\,BXD:\\ \,\,\,\,\,\,\,\,\,\,\,\, + \,\,\,\,\,\,\,\,\,\,m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, – \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m + 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \\ \Rightarrow hs\,\,\,DB\,\,\,tren\,\,\,\left( { – \infty ;\,\, – 1} \right)\,\,va\,\,\,\left( {2; + \infty } \right)\\ \Leftrightarrow \left\{ \begin{array}{l} – 1 \le m\\ m + 2 \le 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m \ge – 1\\ m \le 0 \end{array} \right. \Leftrightarrow – 1 \le m \le 0.\\ Vay\,\,\, – 1 \le m \le 0\,\,thoa\,\,man\,\,bai\,\,toan. \end{array}\] Bình luận
\[\begin{array}{l}
y = {x^3} – 3\left( {m + 1} \right){x^2} + 3m\left( {m + 2} \right)x + 1\\
\Rightarrow y’ = 3{x^2} – 6\left( {m + 1} \right)x + 3m\left( {m + 2} \right).\\
\Rightarrow y’ = 0\\
\Leftrightarrow 3{x^2} – 6\left( {m + 1} \right)x + 3m\left( {m + 2} \right) = 0\,\\
\Leftrightarrow {x^2} – 2\left( {m + 1} \right)x + {m^2} + 2m = 0\,\,\,\,\,\left( * \right)\\
TH1:\,\,\,hs\,\,\,DB\,\,tren\,\,\,R\\
\Leftrightarrow y’ \geq 0\,\,\,\forall x \in R\\
\Leftrightarrow \Delta ‘ \leq 0\\
\Leftrightarrow {\left( {m + 1} \right)^2} – {m^2} – 2m \leq 0\\
\Leftrightarrow {m^2} + 2m + 1 – {m^2} – 2m \leq 0\\
\Leftrightarrow 1 \leq 0\,\,\,\left( {vo\,\,ly} \right)\\
\Rightarrow hs\,\,\,k\,\,\,DB\,\,\,tren\,\,\,R.\\
TH2:\,\,pt\,\,y’ = 0\,\,co\,\,2\,\,nghiem\,\,pb\\
\Leftrightarrow \Delta ‘ > 0 \Leftrightarrow {\left( {m + 1} \right)^2} – {m^2} – 2m > 0 \Leftrightarrow 1 > 0\,\,\,\forall m.\\
\Rightarrow pt\,\,\,\left( * \right)\,\,\,co\,\,\,2\,\,nghiem\,\,\,pb\,\,\,{x_1},\,\,{x_2}\,\,\,voi\,\,moi\,\,m.\\
\Rightarrow \left[ \begin{array}{l}
{x_1} = m + 1 + 1 = m + 2\\
{x_2} = m + 1 – 1 = m
\end{array} \right..\\
Ta\,\,co\,\,\,BXD:\\
\,\,\,\,\,\,\,\,\,\,\,\, + \,\,\,\,\,\,\,\,\,\,m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, – \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m + 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \\
\Rightarrow hs\,\,\,DB\,\,\,tren\,\,\,\left( { – \infty ;\,\, – 1} \right)\,\,va\,\,\,\left( {2; + \infty } \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
– 1 \le m\\
m + 2 \le 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ge – 1\\
m \le 0
\end{array} \right. \Leftrightarrow – 1 \le m \le 0.\\
Vay\,\,\, – 1 \le m \le 0\,\,thoa\,\,man\,\,bai\,\,toan.
\end{array}\]