tìm m để mỗi hệ bpt sau có nghiệm:x+4m^2<=2mx+1 và 3x+2>2x-1. b, 4x-5>-3x+2 và 3x+2m+2<0 07/11/2021 Bởi Kinsley tìm m để mỗi hệ bpt sau có nghiệm:x+4m^2<=2mx+1 và 3x+2>2x-1. b, 4x-5>-3x+2 và 3x+2m+2<0
Đáp án: $\begin{array}{l}a)\left\{ \begin{array}{l}x + 4{m^2} \le 2mx + 1\\3x + 2 > 2x – 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x – 2mx \le 1 – 4{m^2}\\3x – 2x > – 1 – 2\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}\left( {1 – 2m} \right).x \le \left( {1 – 2m} \right)\left( {1 + 2m} \right)\\x > – 3\end{array} \right.\\ + Khi:m = \dfrac{1}{2} \Rightarrow 0.x \le 0\left( {tm} \right)\\ + Khi:m < \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}x \le 1 + 2m\\x > – 3\end{array} \right.\\ \Rightarrow 1 + 2m > – 3\\ \Rightarrow 2m > – 4\\ \Rightarrow m > – 2\\ \Rightarrow – 2 < m < \dfrac{1}{2}\\ + Khi:m > \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}x \ge 1 + 2m\\x > – 3\end{array} \right.\left( {tm} \right)\\Vậy\,m > – 2\\b)\left\{ \begin{array}{l}4x – 5 > – 3x + 2\\3x + 2m + 2 < 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}7x > 7\\3x < – 2m – 2\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x > 1\\x < \dfrac{{ – 2m – 2}}{3}\end{array} \right.\\ \Rightarrow 1 < \dfrac{{ – 2m – 2}}{3}\\ \Rightarrow – 2m – 2 > 3\\ \Rightarrow 2m < – 5\\ \Rightarrow m < – \dfrac{5}{2}\\Vậy\,m < – \dfrac{5}{2}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)\left\{ \begin{array}{l}
x + 4{m^2} \le 2mx + 1\\
3x + 2 > 2x – 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x – 2mx \le 1 – 4{m^2}\\
3x – 2x > – 1 – 2
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
\left( {1 – 2m} \right).x \le \left( {1 – 2m} \right)\left( {1 + 2m} \right)\\
x > – 3
\end{array} \right.\\
+ Khi:m = \dfrac{1}{2} \Rightarrow 0.x \le 0\left( {tm} \right)\\
+ Khi:m < \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}
x \le 1 + 2m\\
x > – 3
\end{array} \right.\\
\Rightarrow 1 + 2m > – 3\\
\Rightarrow 2m > – 4\\
\Rightarrow m > – 2\\
\Rightarrow – 2 < m < \dfrac{1}{2}\\
+ Khi:m > \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}
x \ge 1 + 2m\\
x > – 3
\end{array} \right.\left( {tm} \right)\\
Vậy\,m > – 2\\
b)\left\{ \begin{array}{l}
4x – 5 > – 3x + 2\\
3x + 2m + 2 < 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
7x > 7\\
3x < – 2m – 2
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x > 1\\
x < \dfrac{{ – 2m – 2}}{3}
\end{array} \right.\\
\Rightarrow 1 < \dfrac{{ – 2m – 2}}{3}\\
\Rightarrow – 2m – 2 > 3\\
\Rightarrow 2m < – 5\\
\Rightarrow m < – \dfrac{5}{2}\\
Vậy\,m < – \dfrac{5}{2}
\end{array}$