Tìm max, min của hàm số a. y=2sin^2x-cos2x b. y=3-2|sinx| c. y=cosx+cos(x-pi/3)

Tìm max, min của hàm số
a. y=2sin^2x-cos2x
b. y=3-2|sinx|
c. y=cosx+cos(x-pi/3)

0 bình luận về “Tìm max, min của hàm số a. y=2sin^2x-cos2x b. y=3-2|sinx| c. y=cosx+cos(x-pi/3)”

  1. a) $y = 2\sin^2x – \cos2x$

    $= 1 – 2\cos2x$

    Ta có: $- 1 \leq \cos2x \leq 1$

    $\Leftrightarrow -2\leq -2\cos2x \leq 2$

    $\Leftrightarrow – 1 \leq 1 – 2\cos2x \leq 3$

    Hay $-1 \leq y \leq 3$

    Vậy $\min y = – 1 \Leftrightarrow \cos2x = 1\Leftrightarrow x = k\pi$

    $\max y = 3 \Leftrightarrow \cos2x = – 1 \Leftrightarrow x = \dfrac{\pi}{2} + k\pi\quad (k \in \Bbb Z)$

    b) $y = 3 – 2|\sin x|$

    Ta có: $0 \leq |\sin x| \leq 1$

    $\Leftrightarrow – 2 \leq -2|\sin x| \leq 0$

    $\Leftrightarrow 1 \leq 3 -2|\sin x| \leq 3$

    Hay $1 \leq y \leq 3$

    Vậy $\min y = 1 \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi$

    $\max y = 3 \Leftrightarrow \sin x = \pm 1 \Leftrightarrow x = \dfrac{\pi}{2} + k\pi \quad (k \in \Bbb Z)$

    c) $y = \cos x + \cos\left(x – \dfrac{\pi}{3}\right)$

    $= \cos x + \cos x.\cos\dfrac{\pi}{3} + \sin x.\sin\dfrac{\pi}{3}$

    $= \dfrac{3}{2}\cos x + \dfrac{\sqrt3}{2}\sin x$

    $= \sqrt3.\left(\dfrac{\sqrt3}{2}\cos x + \dfrac{1}{2}\sin x\right)$

    $= \sqrt3.\cos\left(x – \dfrac{\pi}{6}\right)$

    Ta có:

    $-1 \leq \cos\left(x – \dfrac{\pi}{6}\right) \leq 1$

    $\Leftrightarrow -\sqrt3 \leq \sqrt3.\cos\left(x – \dfrac{\pi}{6}\right) \leq \sqrt3$

    Hay $-\sqrt3 \leq y \leq \sqrt3$

    Vậy $\min y = – \sqrt3 \Leftrightarrow \cos\left(x – \dfrac{\pi}{6}\right) = -1 \Leftrightarrow x = \dfrac{7\pi}{6} + k2\pi$

    $\max y = \sqrt3 \Leftrightarrow \cos\left(x – \dfrac{\pi}{6}\right) = 1 \Leftrightarrow x = \dfrac{\pi}{6} + k2\pi \quad (k \in \Bbb Z)$

    Bình luận

Viết một bình luận