Tìm max,min của hàm số: a. $y=\sqrt{5-2sin^2xcos^2x}$ b. $y=\sqrt{2(1+cosx)}+1$ c. $y=-\sqrt{2sinx}$ 30/07/2021 Bởi Aaliyah Tìm max,min của hàm số: a. $y=\sqrt{5-2sin^2xcos^2x}$ b. $y=\sqrt{2(1+cosx)}+1$ c. $y=-\sqrt{2sinx}$
$a) \quad y = \sqrt{5 – 2\sin^2x\cos^2x}$ $=\sqrt{5 – \dfrac{1}{2}\sin^22x}$ Ta có: $0 \leq \sin^22x \leq 1$ $\Leftrightarrow -\dfrac{1}{2} \leq -\dfrac{1}{2}\sin^22x \leq 0$ $\Leftrightarrow \dfrac{9}{2} \leq 5 -\dfrac{1}{2}\sin^22x \leq 5$ $\Leftrightarrow \dfrac{3\sqrt2}{2} \leq \sqrt{5 – \dfrac{1}{2}\sin^22x}\leq \sqrt5$ Vậy $\min y = \dfrac{3\sqrt2}{2}\Leftrightarrow \sin^22x = 1 \Leftrightarrow x = \dfrac{\pi}{4} + k\dfrac{\pi}{2}$ $\max y = \sqrt5 \Leftrightarrow \sin2x = 0 \Leftrightarrow x = k\dfrac{\pi}{2} \quad (k \in \Bbb Z)$ $b) \quad y = \sqrt{2(1 + \cos x)} + 1$ Ta có: $-1 \leq \cos x \leq 1$ $\Leftrightarrow 0 \leq 1 + \cos x \leq 2$ $\Leftrightarrow 0 \leq 2(1 + \cos x) \leq 4$ $\Leftrightarrow 0 \leq \sqrt{2(1 + \cos x)} \leq 2$ $\Leftrightarrow 1 \leq \sqrt{2(1 + \cos x)} + 1\leq 3$ Vậy $\min y = 1\Leftrightarrow\cos x = -1\Leftrightarrow x = \pi + k2\pi$ $\max y = 3 \Leftrightarrow \cos x =1 \Leftrightarrow x = k\pi\quad (k \in \Bbb Z)$ $c) \quad y = -\sqrt{2\sin x}$ Ta có: $0 \leq \sqrt{2\sin x} \leq \sqrt2$ $\Leftrightarrow -\sqrt2 \leq -\sqrt{2\sin x}\leq 0$ Vậy $\min y = -\sqrt2 \Leftrightarrow \sin x = 1 \Leftrightarrow x = \dfrac{\pi}{2} + k2\pi$ $\max y = 0 \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi \quad (k \in \Bbb Z)$ Bình luận
$a) \quad y = \sqrt{5 – 2\sin^2x\cos^2x}$
$=\sqrt{5 – \dfrac{1}{2}\sin^22x}$
Ta có:
$0 \leq \sin^22x \leq 1$
$\Leftrightarrow -\dfrac{1}{2} \leq -\dfrac{1}{2}\sin^22x \leq 0$
$\Leftrightarrow \dfrac{9}{2} \leq 5 -\dfrac{1}{2}\sin^22x \leq 5$
$\Leftrightarrow \dfrac{3\sqrt2}{2} \leq \sqrt{5 – \dfrac{1}{2}\sin^22x}\leq \sqrt5$
Vậy $\min y = \dfrac{3\sqrt2}{2}\Leftrightarrow \sin^22x = 1 \Leftrightarrow x = \dfrac{\pi}{4} + k\dfrac{\pi}{2}$
$\max y = \sqrt5 \Leftrightarrow \sin2x = 0 \Leftrightarrow x = k\dfrac{\pi}{2} \quad (k \in \Bbb Z)$
$b) \quad y = \sqrt{2(1 + \cos x)} + 1$
Ta có:
$-1 \leq \cos x \leq 1$
$\Leftrightarrow 0 \leq 1 + \cos x \leq 2$
$\Leftrightarrow 0 \leq 2(1 + \cos x) \leq 4$
$\Leftrightarrow 0 \leq \sqrt{2(1 + \cos x)} \leq 2$
$\Leftrightarrow 1 \leq \sqrt{2(1 + \cos x)} + 1\leq 3$
Vậy $\min y = 1\Leftrightarrow\cos x = -1\Leftrightarrow x = \pi + k2\pi$
$\max y = 3 \Leftrightarrow \cos x =1 \Leftrightarrow x = k\pi\quad (k \in \Bbb Z)$
$c) \quad y = -\sqrt{2\sin x}$
Ta có:
$0 \leq \sqrt{2\sin x} \leq \sqrt2$
$\Leftrightarrow -\sqrt2 \leq -\sqrt{2\sin x}\leq 0$
Vậy $\min y = -\sqrt2 \Leftrightarrow \sin x = 1 \Leftrightarrow x = \dfrac{\pi}{2} + k2\pi$
$\max y = 0 \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi \quad (k \in \Bbb Z)$
Đáp án:
Giải thích các bước giải: