Tìm max P biết P=√x -x mn giúp mik với ạ 30/08/2021 Bởi Mary Tìm max P biết P=√x -x mn giúp mik với ạ
Đáp án: `Max_{P} = \frac{1}{4}` Giải thích các bước giải: `P = \sqrt{x} – x``P = \sqrt{x} – x – \frac{1}{4} + \frac{1}{4}``P = – ( x – \sqrt{x} + \frac{1}{4} ) + \frac{1}{4}``P = – [ (\sqrt{x})^2 – 2.\sqrt{x}.\frac{1}{2} + (\frac{1}{2})^2 ] + \frac{1}{4}``P = -(\sqrt{x} – \frac{1}{2})^2 + \frac{1}{4}`Ta có: `(\sqrt{x} – \frac{1}{2})^2 \ge 0``\to -(\sqrt{x} – \frac{1}{2})^2 \le 0``\to – (\sqrt{x} – \frac{1}{2})^2 + \frac{1}{4} \le \frac{1}{4}`Dấu “`=`” xảy ra `<=> x = \frac{1}{4}`Vậy `Max_{P} = \frac{1}{4}` khi `x = \frac{1}{4}` Bình luận
$P=\sqrt{x} -x\\P=\sqrt{x}-(\sqrt{x})²-\dfrac{1}{4}+\dfrac{1}{4}\\P=-[(\sqrt{x})²-\sqrt{x}+\dfrac{1}{4}]+\dfrac{1}{4}\\P=-[ (\sqrt{x})^2 – 2.\sqrt{x}.\dfrac{1}{2} + (\dfrac{1}{2})^2 ]+\dfrac{1}{4}\\P=-(\sqrt{x}-\dfrac{1}{2})^2+\dfrac{1}{4}$ Vì $-(\sqrt{x}-\dfrac{1}{2})^2≤0\\ ⇔ -(\sqrt{x}-\dfrac{1}{2})^2+\dfrac{1}{4}≤\dfrac{1}{4}$ Dấu $”=”$ xảy ra khi $⇔\sqrt{x}-\dfrac{1}{2}=0\\⇔\sqrt{x}=\dfrac{1}{2}\\⇔x=\dfrac{1}{4}$ Vậy $P_{max}=\dfrac{1}{4}$ khi $x=\dfrac{1}{4}$ Bình luận
Đáp án: `Max_{P} = \frac{1}{4}`
Giải thích các bước giải:
`P = \sqrt{x} – x`
`P = \sqrt{x} – x – \frac{1}{4} + \frac{1}{4}`
`P = – ( x – \sqrt{x} + \frac{1}{4} ) + \frac{1}{4}`
`P = – [ (\sqrt{x})^2 – 2.\sqrt{x}.\frac{1}{2} + (\frac{1}{2})^2 ] + \frac{1}{4}`
`P = -(\sqrt{x} – \frac{1}{2})^2 + \frac{1}{4}`
Ta có: `(\sqrt{x} – \frac{1}{2})^2 \ge 0`
`\to -(\sqrt{x} – \frac{1}{2})^2 \le 0`
`\to – (\sqrt{x} – \frac{1}{2})^2 + \frac{1}{4} \le \frac{1}{4}`
Dấu “`=`” xảy ra `<=> x = \frac{1}{4}`
Vậy `Max_{P} = \frac{1}{4}` khi `x = \frac{1}{4}`
$P=\sqrt{x} -x\\P=\sqrt{x}-(\sqrt{x})²-\dfrac{1}{4}+\dfrac{1}{4}\\P=-[(\sqrt{x})²-\sqrt{x}+\dfrac{1}{4}]+\dfrac{1}{4}\\P=-[ (\sqrt{x})^2 – 2.\sqrt{x}.\dfrac{1}{2} + (\dfrac{1}{2})^2 ]+\dfrac{1}{4}\\P=-(\sqrt{x}-\dfrac{1}{2})^2+\dfrac{1}{4}$
Vì $-(\sqrt{x}-\dfrac{1}{2})^2≤0\\ ⇔ -(\sqrt{x}-\dfrac{1}{2})^2+\dfrac{1}{4}≤\dfrac{1}{4}$
Dấu $”=”$ xảy ra khi $⇔\sqrt{x}-\dfrac{1}{2}=0\\⇔\sqrt{x}=\dfrac{1}{2}\\⇔x=\dfrac{1}{4}$
Vậy $P_{max}=\dfrac{1}{4}$ khi $x=\dfrac{1}{4}$