Tìm nguyên hàm của y = x^3 (2 – 3.x^2)^2019 dx y = x. √1-x dx y = x^2 / √1-x dx 23/07/2021 Bởi Quinn Tìm nguyên hàm của y = x^3 (2 – 3.x^2)^2019 dx y = x. √1-x dx y = x^2 / √1-x dx
Đáp án: $\begin{array}{l} + )\\I = \int {{x^3}{{\left( {2 – 3{x^2}} \right)}^{2019}} = dx} \\Đặt:2 – 3{x^2} = t\\ \Rightarrow \left\{ \begin{array}{l} – 6xdx = dt \Rightarrow xdx = \frac{{ – dt}}{6}\\{x^2} = \frac{{2 – t}}{3}\end{array} \right.\\ \Rightarrow I = \int {{x^2}{{\left( {2 – 3{x^2}} \right)}^{2019}}.xdx} \\ = \int {\frac{{2 – t}}{3}.{t^{2019}}.} \frac{{ – dt}}{6}\\ = \int {\frac{1}{{18}}{t^{2020}} – \frac{1}{9}{t^{2019}}dt} \\ = \frac{{{t^{2021}}}}{{2021.18}} – \frac{{{t^{2020}}}}{{9.2020}} + c\\ = \frac{{{{\left( {2 – 3{x^2}} \right)}^{2021}}}}{{2021.18}} – \frac{{{{\left( {2 – 3{x^2}} \right)}^{2020}}}}{{9.2020}} + c\\I = \int {x.\sqrt {1 – x} dx} \\\sqrt {1 – x} = t\\ \Rightarrow \left\{ \begin{array}{l}1 – x = {t^2} \Rightarrow x = 1 – {t^2}\\ – dx = 2tdt \Rightarrow dx = – 2tdt\end{array} \right.\\ \Rightarrow I = \int {\left( {1 – {t^2}} \right).t.\left( { – 2t} \right)dt} \\ = \int {2{t^4} – 2{t^2}dt} \\ = \frac{{2{t^5}}}{5} – \frac{{2{t^3}}}{3} + c\\ = \frac{{2{{\left( {\sqrt {1 – x} } \right)}^5}}}{5} – \frac{{2{{\left( {\sqrt {1 – x} } \right)}^3}}}{3} + c\end{array}$ ý 3 tương tự đặt √1-x=t Bình luận
Đáp án:
$\begin{array}{l}
+ )\\
I = \int {{x^3}{{\left( {2 – 3{x^2}} \right)}^{2019}} = dx} \\
Đặt:2 – 3{x^2} = t\\
\Rightarrow \left\{ \begin{array}{l}
– 6xdx = dt \Rightarrow xdx = \frac{{ – dt}}{6}\\
{x^2} = \frac{{2 – t}}{3}
\end{array} \right.\\
\Rightarrow I = \int {{x^2}{{\left( {2 – 3{x^2}} \right)}^{2019}}.xdx} \\
= \int {\frac{{2 – t}}{3}.{t^{2019}}.} \frac{{ – dt}}{6}\\
= \int {\frac{1}{{18}}{t^{2020}} – \frac{1}{9}{t^{2019}}dt} \\
= \frac{{{t^{2021}}}}{{2021.18}} – \frac{{{t^{2020}}}}{{9.2020}} + c\\
= \frac{{{{\left( {2 – 3{x^2}} \right)}^{2021}}}}{{2021.18}} – \frac{{{{\left( {2 – 3{x^2}} \right)}^{2020}}}}{{9.2020}} + c\\
I = \int {x.\sqrt {1 – x} dx} \\
\sqrt {1 – x} = t\\
\Rightarrow \left\{ \begin{array}{l}
1 – x = {t^2} \Rightarrow x = 1 – {t^2}\\
– dx = 2tdt \Rightarrow dx = – 2tdt
\end{array} \right.\\
\Rightarrow I = \int {\left( {1 – {t^2}} \right).t.\left( { – 2t} \right)dt} \\
= \int {2{t^4} – 2{t^2}dt} \\
= \frac{{2{t^5}}}{5} – \frac{{2{t^3}}}{3} + c\\
= \frac{{2{{\left( {\sqrt {1 – x} } \right)}^5}}}{5} – \frac{{2{{\left( {\sqrt {1 – x} } \right)}^3}}}{3} + c
\end{array}$
ý 3 tương tự đặt √1-x=t