Tìm số nguyên $x$, biết : $\ |x + 1| + |x – 2| + |x + 7| = 5x – 10$ 13/11/2021 Bởi Brielle Tìm số nguyên $x$, biết : $\ |x + 1| + |x – 2| + |x + 7| = 5x – 10$
Đáp án: x=8 Giải thích các bước giải: \(\begin{array}{l}\left| {x + 1} \right| + \left| {x – 2} \right| + \left| {x + 7} \right| = 5x – 10\\ \to \left[ \begin{array}{l}x + 1 + x – 2 + x + 7 = 5x – 10\left( {DK:x \ge 2} \right)\\x + 1 – x + 2 + x + 7 = 5x – 10\left( {DK:2 > x \ge – 1} \right)\\ – x – 1 – x + 2 + x + 7 = 5x – 10\left( {DK: – 1 > x \ge – 7} \right)\\ – x – 1 – x + 2 – x – 7 = 5x – 10\left( {DK: – 7 > x} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}2x = 16\\4x = 20\\6x = 18\\8x = 4\end{array} \right.\\ \to \left[ \begin{array}{l}x = 8\left( {TM} \right)\\x = 5\left( l \right)\\x = 3\left( l \right)\\x = \dfrac{1}{2}\left( l \right)\end{array} \right.\\KL:x = 8\end{array}\) Bình luận
Đáp án:
x=8
Giải thích các bước giải:
\(\begin{array}{l}
\left| {x + 1} \right| + \left| {x – 2} \right| + \left| {x + 7} \right| = 5x – 10\\
\to \left[ \begin{array}{l}
x + 1 + x – 2 + x + 7 = 5x – 10\left( {DK:x \ge 2} \right)\\
x + 1 – x + 2 + x + 7 = 5x – 10\left( {DK:2 > x \ge – 1} \right)\\
– x – 1 – x + 2 + x + 7 = 5x – 10\left( {DK: – 1 > x \ge – 7} \right)\\
– x – 1 – x + 2 – x – 7 = 5x – 10\left( {DK: – 7 > x} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
2x = 16\\
4x = 20\\
6x = 18\\
8x = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 8\left( {TM} \right)\\
x = 5\left( l \right)\\
x = 3\left( l \right)\\
x = \dfrac{1}{2}\left( l \right)
\end{array} \right.\\
KL:x = 8
\end{array}\)