tìm số nguyên x ,sao cho :a,2x+1 là ước của 11;b,3x-8 là bội của x-4 ;c, 2x-3 là ước của 4-5x 24/10/2021 Bởi Madelyn tìm số nguyên x ,sao cho :a,2x+1 là ước của 11;b,3x-8 là bội của x-4 ;c, 2x-3 là ước của 4-5x
Đáp án: ._. Giải thích các bước giải: `a)` `2x+1 in Ư(11)` `=> 2x+1 in {-11;-1;1;11}` `=> 2x in {-12;-2;0;10}` `=> x in {-6;-1;0;5}` `b)` `3x-8 in B(x-4)` `=> 3x-8 vdots x-4` `=> 3(x-4)+4 vdots x-4` Mà `3(x-4) vdots x-4` `=> 4 vdots x-4` `=> x-4 in Ư(4)={-4;-2;-1;1;2;4}` `=> x in {0;2;3;5;6;8}` `c) 2x-3 in Ư(4-5x)` `=> 4-5x vdots 2x-3` `=> 10x-8 vdots 2x-3` `=> 5(2x-3)+7 vdots 2x-3` Mà `5(2x-3) vdots 2x-3` `=> 7 vdots 2x-3` `=> 2x-3 in Ư(7)={-7;-1;1;7}` `=> 2x in {-4;2;4;10}` `=> x in {-2;1;2;5}` Bình luận
Đáp án: c)\(\left[ \begin{array}{l}x = 5\\x = – 2\\x = 2\\x = 1\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}a)2x + 1 \in U\left( {11} \right)\\ \to \left[ \begin{array}{l}2x + 1 = 11\\2x + 1 = – 11\\2x + 1 = 1\\2x + 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 5\\x = – 6\\x = 0\\x = – 1\end{array} \right.\\b)3x – 8 \in B\left( {x – 4} \right)\\ \to 3x – 8 \vdots x – 4\\ \to 3\left( {x – 4} \right) + 4 \vdots x – 4\\ \to 4 \vdots x – 4\\ \to x – 4 \in U\left( 4 \right)\\ \to \left[ \begin{array}{l}x – 4 = 4\\x – 4 = – 4\\x – 4 = 2\\x – 4 = – 2\\x – 4 = 1\\x – 4 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 8\\x = 0\\x = 6\\x = 2\\x = 5\\x = 3\end{array} \right.\\c)2x – 3 \in U\left( {4 – 5x} \right)\\ \to 4 – 5x \vdots 2x – 3\\ \to – 10x + 8 \vdots 2x – 3\\ \to – 5\left( {2x – 3} \right) + 7 \vdots 2x – 3\\ \to 7 \vdots 2x – 3\\ \to 2x – 3 \in U\left( 7 \right)\\ \to \left[ \begin{array}{l}2x – 3 = 7\\2x – 3 = – 7\\2x – 3 = 1\\2x – 3 = – 1\end{array} \right. \to \left[ \begin{array}{l}x = 5\\x = – 2\\x = 2\\x = 1\end{array} \right.\end{array}\) Bình luận
Đáp án:
._.
Giải thích các bước giải:
`a)`
`2x+1 in Ư(11)`
`=> 2x+1 in {-11;-1;1;11}`
`=> 2x in {-12;-2;0;10}`
`=> x in {-6;-1;0;5}`
`b)`
`3x-8 in B(x-4)`
`=> 3x-8 vdots x-4`
`=> 3(x-4)+4 vdots x-4`
Mà `3(x-4) vdots x-4`
`=> 4 vdots x-4`
`=> x-4 in Ư(4)={-4;-2;-1;1;2;4}`
`=> x in {0;2;3;5;6;8}`
`c) 2x-3 in Ư(4-5x)`
`=> 4-5x vdots 2x-3`
`=> 10x-8 vdots 2x-3`
`=> 5(2x-3)+7 vdots 2x-3`
Mà `5(2x-3) vdots 2x-3`
`=> 7 vdots 2x-3`
`=> 2x-3 in Ư(7)={-7;-1;1;7}`
`=> 2x in {-4;2;4;10}`
`=> x in {-2;1;2;5}`
Đáp án:
c)\(\left[ \begin{array}{l}
x = 5\\
x = – 2\\
x = 2\\
x = 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a)2x + 1 \in U\left( {11} \right)\\
\to \left[ \begin{array}{l}
2x + 1 = 11\\
2x + 1 = – 11\\
2x + 1 = 1\\
2x + 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 5\\
x = – 6\\
x = 0\\
x = – 1
\end{array} \right.\\
b)3x – 8 \in B\left( {x – 4} \right)\\
\to 3x – 8 \vdots x – 4\\
\to 3\left( {x – 4} \right) + 4 \vdots x – 4\\
\to 4 \vdots x – 4\\
\to x – 4 \in U\left( 4 \right)\\
\to \left[ \begin{array}{l}
x – 4 = 4\\
x – 4 = – 4\\
x – 4 = 2\\
x – 4 = – 2\\
x – 4 = 1\\
x – 4 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 8\\
x = 0\\
x = 6\\
x = 2\\
x = 5\\
x = 3
\end{array} \right.\\
c)2x – 3 \in U\left( {4 – 5x} \right)\\
\to 4 – 5x \vdots 2x – 3\\
\to – 10x + 8 \vdots 2x – 3\\
\to – 5\left( {2x – 3} \right) + 7 \vdots 2x – 3\\
\to 7 \vdots 2x – 3\\
\to 2x – 3 \in U\left( 7 \right)\\
\to \left[ \begin{array}{l}
2x – 3 = 7\\
2x – 3 = – 7\\
2x – 3 = 1\\
2x – 3 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 5\\
x = – 2\\
x = 2\\
x = 1
\end{array} \right.
\end{array}\)