tìm số nguyên x thỏa mãn |x-2016|+|x-2017|+|x-2018|+|x-2019|=4 26/11/2021 Bởi Piper tìm số nguyên x thỏa mãn |x-2016|+|x-2017|+|x-2018|+|x-2019|=4
Đáp án: `x ∈ { 2017 ; 2018 }` Giải thích các bước giải: Ta có: `|x – 2016| + |x – 2017| + |x – 2018| + |x – 2019|` `= (|x – 2016| + |x – 2019|) + (|x – 2017| + |x – 2018|)` `= (|x – 2016| + |2019 – x|) + (|x – 2017| + |2018 – x|)` `≥ |x – 2016 + 2019 – x| + |x – 2017 + 2018 – x| = 3 + 1 = 4` Dấu “=” xảy ra `⇔` $\left\{ \begin{array}{l}(x – 2016)(2019 – x) ≥ 0\\(x – 2017)(2018 – x) ≥ 0\end{array} \right.$ `⇔` $\left\{ \begin{array}{l}(x – 2016)(x – 2019) ≤ 0\\(x – 2017)(x – 2018) ≤ 0\end{array} \right.$ Mà $\left\{ \begin{array}{l}x – 2016 > x – 2019\\x – 2017 > x – 2018\end{array} \right.$ `⇔` $\left\{ \begin{array}{l}\left\{ \begin{array}{l}x – 2016 ≥ 0\\x – 2019 ≤ 0\end{array} \right.\\\left\{ \begin{array}{l}x – 2017 ≥ 0\\x – 2018 ≤ 0\end{array} \right.\end{array} \right.$ `⇔` $\left\{ \begin{array}{l}2016 ≤ x ≤ 2019\\2017 ≤ x ≤ 2018\end{array} \right.$ `⇔ 2017 ≤ x ≤ 2018` Mà `x ∈ ZZ` `-> x ∈ { 2017 ; 2018 }` Bình luận
Đáp án: `x ∈ { 2017 ; 2018 }`
Giải thích các bước giải:
Ta có: `|x – 2016| + |x – 2017| + |x – 2018| + |x – 2019|`
`= (|x – 2016| + |x – 2019|) + (|x – 2017| + |x – 2018|)`
`= (|x – 2016| + |2019 – x|) + (|x – 2017| + |2018 – x|)`
`≥ |x – 2016 + 2019 – x| + |x – 2017 + 2018 – x| = 3 + 1 = 4`
Dấu “=” xảy ra `⇔` $\left\{ \begin{array}{l}(x – 2016)(2019 – x) ≥ 0\\(x – 2017)(2018 – x) ≥ 0\end{array} \right.$
`⇔` $\left\{ \begin{array}{l}(x – 2016)(x – 2019) ≤ 0\\(x – 2017)(x – 2018) ≤ 0\end{array} \right.$
Mà $\left\{ \begin{array}{l}x – 2016 > x – 2019\\x – 2017 > x – 2018\end{array} \right.$
`⇔` $\left\{ \begin{array}{l}\left\{ \begin{array}{l}x – 2016 ≥ 0\\x – 2019 ≤ 0\end{array} \right.\\\left\{ \begin{array}{l}x – 2017 ≥ 0\\x – 2018 ≤ 0\end{array} \right.\end{array} \right.$
`⇔` $\left\{ \begin{array}{l}2016 ≤ x ≤ 2019\\2017 ≤ x ≤ 2018\end{array} \right.$
`⇔ 2017 ≤ x ≤ 2018`
Mà `x ∈ ZZ` `-> x ∈ { 2017 ; 2018 }`