Tìm số tiệm cận của y = (x^2-5x+4)÷(x^2-1) Giải từng bước ạ

Tìm số tiệm cận của y = (x^2-5x+4)÷(x^2-1)
Giải từng bước ạ

0 bình luận về “Tìm số tiệm cận của y = (x^2-5x+4)÷(x^2-1) Giải từng bước ạ”

  1. Đáp án:

    $TCĐ: x=-1\\TCN: y=1$

    Giải thích các bước giải:

    $ y=\dfrac{x^2-5x+4}{x^2-1}=\dfrac{(x-4)(x-1)}{(x-1)(x+1)}=\dfrac{x-4}{x+1}\\ \displaystyle\lim_{x \to -1^+} y\\ =\displaystyle\lim_{x \to -1^+} \dfrac{x-4}{x+1}\\ =-\infty\\ \Rightarrow TCĐ: x=-1\\ \displaystyle\lim_{x \to +\infty} y\\ =\displaystyle\lim_{x \to +\infty} \dfrac{x^2-5x+4}{x^2-1}\\ =\displaystyle\lim_{x \to +\infty} \dfrac{1-\dfrac{5}{x}+\dfrac{4}{x^2}}{1-\dfrac{1}{x^2}}\\ =1\\ \Rightarrow TCN: y=1$

    Bình luận

Viết một bình luận