Tìm x: $\sqrt[2]{x-2}$$\sqrt[]{x-1}$ = $\frac{1}{2}$ 18/08/2021 Bởi Maria Tìm x: $\sqrt[2]{x-2}$$\sqrt[]{x-1}$ = $\frac{1}{2}$
Đáp án: \(\left[ \begin{array}{l}x = \dfrac{{13}}{4}\\x = \dfrac{5}{4}\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}DK:x \ge 1\\\sqrt {x – 2\sqrt {x – 1} } = \dfrac{1}{2}\\ \to \sqrt {x – 1 – 2\sqrt {x – 1} .1 + 1} = \dfrac{1}{2}\\ \to \sqrt {{{\left( {\sqrt {x – 1} – 1} \right)}^2}} = \dfrac{1}{2}\\ \to \left| {\sqrt {x – 1} – 1} \right| = \dfrac{1}{2}\\ \to \left[ \begin{array}{l}\sqrt {x – 1} – 1 = \dfrac{1}{2}\\\sqrt {x – 1} – 1 = – \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}\sqrt {x – 1} = \dfrac{3}{2}\\\sqrt {x – 1} = \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}x – 1 = \dfrac{9}{4}\\x – 1 = \dfrac{1}{4}\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{{13}}{4}\\x = \dfrac{5}{4}\end{array} \right.\left( {TM} \right)\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x = \dfrac{{13}}{4}\\
x = \dfrac{5}{4}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ge 1\\
\sqrt {x – 2\sqrt {x – 1} } = \dfrac{1}{2}\\
\to \sqrt {x – 1 – 2\sqrt {x – 1} .1 + 1} = \dfrac{1}{2}\\
\to \sqrt {{{\left( {\sqrt {x – 1} – 1} \right)}^2}} = \dfrac{1}{2}\\
\to \left| {\sqrt {x – 1} – 1} \right| = \dfrac{1}{2}\\
\to \left[ \begin{array}{l}
\sqrt {x – 1} – 1 = \dfrac{1}{2}\\
\sqrt {x – 1} – 1 = – \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt {x – 1} = \dfrac{3}{2}\\
\sqrt {x – 1} = \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x – 1 = \dfrac{9}{4}\\
x – 1 = \dfrac{1}{4}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{{13}}{4}\\
x = \dfrac{5}{4}
\end{array} \right.\left( {TM} \right)
\end{array}\)