tìm tất cả các cặp số nguyên x,y thỏa mãn:x(2y+3)=y+1 24/11/2021 Bởi Hailey tìm tất cả các cặp số nguyên x,y thỏa mãn:x(2y+3)=y+1
$x(2y+3)=y+1$ $⇒2xy+3x=y+1$ $⇒2xy+3x-(y+1)=0$ $⇒2xy+3x-y-1=0$ $⇒2xy+3x-y=1$ $⇒x(2y+3)-y=1$ $⇒2x(2y+3)-2y=1.2$ $⇒2x(2y+3)-2y-3=2-3$ $⇒2x(2y+3)-(2y+3)=-1$ $⇒(2x-1)(2y+3)=-1$ $⇒2x-1;2y+3∈Ư(-1)=±1$ $\left[\begin{array}{ccc}2x-1&1&-1\\2y+3&-1&1\\x&1&0\\y&-2&-1\end{array}\right]$ $Vậy$ $(x;y)=(1;-2);(0;-1)$ Bình luận
$x(2y+3)=y+1$
$⇒2xy+3x=y+1$
$⇒2xy+3x-(y+1)=0$
$⇒2xy+3x-y-1=0$
$⇒2xy+3x-y=1$
$⇒x(2y+3)-y=1$
$⇒2x(2y+3)-2y=1.2$
$⇒2x(2y+3)-2y-3=2-3$
$⇒2x(2y+3)-(2y+3)=-1$
$⇒(2x-1)(2y+3)=-1$
$⇒2x-1;2y+3∈Ư(-1)=±1$
$\left[\begin{array}{ccc}2x-1&1&-1\\2y+3&-1&1\\x&1&0\\y&-2&-1\end{array}\right]$
$Vậy$ $(x;y)=(1;-2);(0;-1)$