tìm tất cả giá trị thực của tham số m sao cho hàm số
y = (tanx – 2)/ (tanx – m)
đồng biến trên khoảng ( 0; $\pi$/4 )
A) m ≤ 0 hoặc 1 ≤m<2
B) m ≤0
C) 1 ≤m<2
D) m ≥2
giải chi tiết
tìm tất cả giá trị thực của tham số m sao cho hàm số
y = (tanx – 2)/ (tanx – m)
đồng biến trên khoảng ( 0; $\pi$/4 )
A) m ≤ 0 hoặc 1 ≤m<2
B) m ≤0
C) 1 ≤m<2
D) m ≥2
giải chi tiết
Đáp án:
$A)\quad m\leqslant 0$ hoặc $1\leqslant m < 2$
Giải thích các bước giải:
$\quad y = \dfrac{\tan x – 2}{\tan x – m}$
Đặt $t = \tan x$
$x\in \left(0;\dfrac{\pi}{4}\right)\Rightarrow t\in (0;1)$
Ta có:
$\quad y =\dfrac{t – 2}{t – m}$
$y’ = \dfrac{- m + 2}{(t – m)^2}\quad \forall t\ne m$
Hàm số đồng biến trên $\left(0;\dfrac{\pi}{4}\right)$
$\Leftrightarrow y’ > 0\quad \forall t\in (0;1)$
$\Leftrightarrow \begin{cases}- m + 2 > 0\\\left[\begin{array}{l}m \leqslant 0\\m \geqslant 1\end{array}\right.\end{cases}$
$\Leftrightarrow \left[\begin{array}{l}m \leqslant 0\\1 \leqslant m < 2\end{array}\right.$
Vậy $m\in (-\infty;0]\cup [1;2)$