tìm x thuộc Z biết x(x+3)=0 (x-2)(5-x)=0 (x-1)(x^2+1)=0 18/07/2021 Bởi Amaya tìm x thuộc Z biết x(x+3)=0 (x-2)(5-x)=0 (x-1)(x^2+1)=0
+) $x(x+3)=0$ ⇒\(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\) Vậy $x=\{0;-3\}$ +) $(x-2)(5-x)=0$ ⇒\(\left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=2\\x=5\end{array} \right.\) Vậy $x=\{2;5\}$ +) $(x-1)(x²+1)=0$ ⇒\(\left[ \begin{array}{l}x-1=0\\x^2+1=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=1\\x^2=-1(loại)\end{array} \right.\) Vậy $x=1$ Bình luận
Đáp án: Giải thích các bước giải: x(x+3)=0 ⇒\(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=0\\x=0-3\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\) (x-2)(5-x)=0 ⇒\(\left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=0+2\\x=5-0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=2\\x=5\end{array} \right.\) (x-1)(x²+1)=0 ⇒\(\left[ \begin{array}{l}x-1=0\\x^2+1=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=0+1\\x=0-1\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=-1\\x^2=-1\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=-1\\x^2=-1^2\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=-1\\x=-1\end{array} \right.\) Bình luận
+)
$x(x+3)=0$
⇒\(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\)
Vậy $x=\{0;-3\}$
+)
$(x-2)(5-x)=0$
⇒\(\left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=2\\x=5\end{array} \right.\)
Vậy $x=\{2;5\}$
+)
$(x-1)(x²+1)=0$
⇒\(\left[ \begin{array}{l}x-1=0\\x^2+1=0\end{array} \right.\) ⇒\(\left[ \begin{array}{l}x=1\\x^2=-1(loại)\end{array} \right.\)
Vậy $x=1$
Đáp án:
Giải thích các bước giải:
x(x+3)=0
⇒\(\left[ \begin{array}{l}x=0\\x+3=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=0\\x=0-3\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.\)
(x-2)(5-x)=0
⇒\(\left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=0+2\\x=5-0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=2\\x=5\end{array} \right.\)
(x-1)(x²+1)=0
⇒\(\left[ \begin{array}{l}x-1=0\\x^2+1=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=0+1\\x=0-1\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=-1\\x^2=-1\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=-1\\x^2=-1^2\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=-1\\x=-1\end{array} \right.\)